Primitive satisfaction and equational problems for lattices and other algebras
HTML articles powered by AMS MathViewer
- by Kirby A. Baker
- Trans. Amer. Math. Soc. 190 (1974), 125-150
- DOI: https://doi.org/10.1090/S0002-9947-1974-0349532-4
- PDF | Request permission
Abstract:
This paper presents a general method of solving equational problems in all equational classes of algebras whose congruence lattices are distributive, such as those consisting of lattices, relation algebras, cylindric algebras, orthomodular lattices, lattice-ordered rings, lattice-ordered groups, Heyting algebras, other lattice-ordered algebras, implication algebras, arithmetic rings, and arithmetical algebras.References
- Kirby A. Baker, Equational classes of modular lattices, Pacific J. Math. 28 (1969), 9–15. MR 244118, DOI 10.2140/pjm.1969.28.9
- Kirby A. Baker, Equational axioms for classes of lattices, Bull. Amer. Math. Soc. 77 (1971), 97–102. MR 288058, DOI 10.1090/S0002-9904-1971-12618-6 —, Congruence-valued logic (to appear). —, Equational axioms for classes of Heyting algebras (preprint), G. Birkhoff, On the structure of abstract algebras, Proc. Cambridge Philos. Soc. 31 (1935), 433-454.
- Garrett Birkhoff, Subdirect unions in universal algebra, Bull. Amer. Math. Soc. 50 (1944), 764–768. MR 10542, DOI 10.1090/S0002-9904-1944-08235-9
- Garrett Birkhoff, Lattice theory, 3rd ed., American Mathematical Society Colloquium Publications, Vol. XXV, American Mathematical Society, Providence, R.I., 1967. MR 0227053
- Günter Bruns and Gudrun Kalmbach, Varieties of orthomodular lattices, Canadian J. Math. 23 (1971), 802–810. MR 289374, DOI 10.4153/CJM-1971-089-1
- Günter Bruns and Gudrun Kalmbach, Varieties of orthomodular lattices. II, Canadian J. Math. 24 (1972), 328–337. MR 294194, DOI 10.4153/CJM-1972-027-4
- George Epstein, The lattice theory of Post algebras, Trans. Amer. Math. Soc. 95 (1960), 300–317. MR 112855, DOI 10.1090/S0002-9947-1960-0112855-8
- L. Fuchs, Partially ordered algebraic systems, Pergamon Press, Oxford-London-New York-Paris; Addison-Wesley Publishing Co., Inc., Reading, Mass.-Palo Alto, Calif.-London, 1963. MR 0171864
- George Grätzer, Universal algebra, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1968. MR 0248066
- George Grätzer, Lattice theory. First concepts and distributive lattices, W. H. Freeman and Co., San Francisco, Calif., 1971. MR 0321817 —, Personal communication.
- Leon Henkin and Alfred Tarski, Cylindric algebras, Proc. Sympos. Pure Math., Vol. II, American Mathematical Society, Providence, R.I., 1961, pp. 83–113. MR 0124250 L. Henkin, D. Monk and A. Tarski, Cylindric algebras. Part I, North-Holland, Amsterdam, 1971.
- C. Herrmann, Weak (projective) radius and finite equational bases for classes of lattices, Algebra Universalis 3 (1973), 51–58. MR 329983, DOI 10.1007/BF02945103
- Samuel S. Holland Jr., The current interest in orthomodular lattices, Trends in Lattice Theory (Sympos., U.S. Naval Academy, Annapolis, Md., 1966) Van Nostrand Reinhold, New York, 1970, pp. 41–126. MR 0272688
- J. R. Isbell, Notes on ordered rings, Algebra Universalis 1 (1971/72), 393–399. MR 295994, DOI 10.1007/BF02944999
- Bjarni Jónsson, Algebras whose congruence lattices are distributive, Math. Scand. 21 (1967), 110–121 (1968). MR 237402, DOI 10.7146/math.scand.a-10850 —, Topics in universal algebra, Lecture Notes, Vanderbilt University, Nashville, Tenn., (1969/70).
- Bjarni Jónsson and Alfred Tarski, Boolean algebras with operators. II, Amer. J. Math. 74 (1952), 127–162. MR 45086, DOI 10.2307/2372074
- R. C. Lyndon, Identities in finite algebras, Proc. Amer. Math. Soc. 5 (1954), 8–9. MR 60482, DOI 10.1090/S0002-9939-1954-0060482-6
- A. I. Mal′cev, On the general theory of algebraic systems, Amer. Math. Soc. Transl. (2) 27 (1963), 125–142. MR 0151416, DOI 10.1090/trans2/027/09
- C. G. McKay, On finite logics, Nederl. Akad. Wetensch. Proc. Ser. A 70=Indag. Math. 29 (1967), 363–365. MR 0215689, DOI 10.1016/S1385-7258(67)50050-1
- Ralph McKenzie, Equational bases for lattice theories, Math. Scand. 27 (1970), 24–38. MR 274353, DOI 10.7146/math.scand.a-10984
- Gerhard Michler and Rudolf Wille, Die primitiven Klassen arithmetischer Ringe, Math. Z. 113 (1970), 369–372 (German). MR 260797, DOI 10.1007/BF01110505
- Aleit Mitschke, Implication algebras are $3$-permutable and $3$-distributive, Algebra Universalis 1 (1971/72), 182–186. MR 309828, DOI 10.1007/BF02944976
- Donald Monk, On equational classes of algebraic versions of logic. I, Math. Scand. 27 (1970), 53–71. MR 280345, DOI 10.7146/math.scand.a-10987 —, Personal communication.
- Sheila Oates MacDonald, Various varieties, J. Austral. Math. Soc. 16 (1973), 363–367. Collection of articles dedicated to the memory of Hanna Neumann, III. MR 0354494, DOI 10.1017/S1446788700015172
- Oystein Ore, On the theorem of Jordan-Hölder, Trans. Amer. Math. Soc. 41 (1937), no. 2, 266–275. MR 1501901, DOI 10.1090/S0002-9947-1937-1501901-X
- Peter Perkins, Bases for equational theories of semigroups, J. Algebra 11 (1969), 298–314. MR 233911, DOI 10.1016/0021-8693(69)90058-1
- R. S. Pierce, Modules over commutative regular rings, Memoirs of the American Mathematical Society, No. 70, American Mathematical Society, Providence, R.I., 1967. MR 0217056
- A. F. Pixley, Distributivity and permutability of congruence relations in equational classes of algebras, Proc. Amer. Math. Soc. 14 (1963), 105–109. MR 146104, DOI 10.1090/S0002-9939-1963-0146104-X
- A. F. Pixley, Completeness in arithmetical algebras, Algebra Universalis 2 (1972), 179–196. MR 321843, DOI 10.1007/BF02945027 R. Quackenbush, personal communication.
- Helena Rasiowa and Roman Sikorski, The mathematics of metamathematics, 3rd ed., Monografie Matematyczne, Tom 41, PWN—Polish Scientific Publishers, Warsaw, 1970. MR 0344067
- E. T. Schmidt, Kongruenzrelationen algebraischer Strukturen, Mathematische Forschungsberichte, XXV, VEB Deutscher Verlag der Wissenschaften, Berlin, 1969 (German). MR 0255474
- Alfred Tarski, On the calculus of relations, J. Symbolic Logic 6 (1941), 73–89. MR 5280, DOI 10.2307/2268577
- A. Tarski, Equational logic and equational theories of algebras, Contributions to Math. Logic (Colloquium, Hannover, 1966) North-Holland, Amsterdam, 1968, pp. 275–288. MR 0237410
- T. Traczyk, An equational definition of a class of Post algebras, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 12 (1964), 147–149. MR 161811
- Heinrich Werner and Rudolf Wille, Charakterisierungen der primitiven Klassen arithmetischer Ringe, Math. Z. 115 (1970), 197–200 (German). MR 265408, DOI 10.1007/BF01109858
- Rudolf Wille, Primitive Länge und primitive Weite bei modularen Verbänden, Math. Z. 108 (1969), 129–136 (German). MR 241332, DOI 10.1007/BF01114466
- Rudolf Wille, Variety invariants for modular lattices, Canadian J. Math. 21 (1969), 279–283. MR 241331, DOI 10.4153/CJM-1969-029-2
- Rudolf Wille, Kongruenzklassengeometrien, Lecture Notes in Mathematics, Vol. 113, Springer-Verlag, Berlin-New York, 1970 (German). MR 0262149, DOI 10.1007/BFb0060213
- R. Wille, Primitive subsets of lattices, Algebra Universalis 2 (1972), 95–98. MR 311524, DOI 10.1007/BF02945015
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 190 (1974), 125-150
- MSC: Primary 08A15; Secondary 06A70
- DOI: https://doi.org/10.1090/S0002-9947-1974-0349532-4
- MathSciNet review: 0349532