A Siegel formula for orthogonal groups over a function field
HTML articles powered by AMS MathViewer
- by Stephen J. Haris
- Trans. Amer. Math. Soc. 190 (1974), 223-231
- DOI: https://doi.org/10.1090/S0002-9947-1974-0349584-1
- PDF | Request permission
Abstract:
We obtain a Siegel formula for a quadratic form over a function field, by establishing the convergence of the corresponding Eisenstein-Siegel series directly, then via the Hasse principle, that of the associated Poisson formula.References
- Armand Borel and T. A. Springer, Rationality properties of linear algebraic groups, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, pp. 26–32. MR 0205998
- Jun-ichi Igusa, On certain representations of semi-simple algebraic groups and the arithmetic of the corresponding invariants. I, Invent. Math. 12 (1971), 62–94. MR 297771, DOI 10.1007/BF01389828
- Jun-ichi Igusa, On the arithmetic of Pfaffians, Nagoya Math. J. 47 (1972), 169–198. MR 376623, DOI 10.1017/S0027763000014999
- André Weil, Basic number theory, Die Grundlehren der mathematischen Wissenschaften, Band 144, Springer-Verlag New York, Inc., New York, 1967. MR 0234930, DOI 10.1007/978-3-662-00046-5 —, Adeles and algebraic groups, Inst. for Advanced Study, Princeton, N. J., 1961.
- André Weil, Sur certains groupes d’opérateurs unitaires, Acta Math. 111 (1964), 143–211 (French). MR 165033, DOI 10.1007/BF02391012
- André Weil, Sur la formule de Siegel dans la théorie des groupes classiques, Acta Math. 113 (1965), 1–87 (French). MR 223373, DOI 10.1007/BF02391774
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 190 (1974), 223-231
- MSC: Primary 10C15; Secondary 12A85
- DOI: https://doi.org/10.1090/S0002-9947-1974-0349584-1
- MathSciNet review: 0349584