Injective modules and localization in noncommutative Noetherian rings
HTML articles powered by AMS MathViewer
- by Arun Vinayak Jategaonkar
- Trans. Amer. Math. Soc. 190 (1974), 109-123
- DOI: https://doi.org/10.1090/S0002-9947-1974-0349727-X
- PDF | Request permission
Abstract:
Let $\mathfrak {S}$ be a semiprime ideal in a right Noetherian ring R and $\mathcal {C}(\mathfrak {S}) = \{ c \in R|[c + \mathfrak {S}$ regular in $R/\mathfrak {S}\}$. We investigate the following two conditions: $({\text {A}})\;\mathcal {C}(\mathfrak {S})$ is a right Ore set in R. $({\text {B}})\;\mathcal {C}(\mathfrak {S})$ is a right Ore set in R and the right ideals of ${R_{\mathfrak {S}}}$, the classical right quotient ring of R w.r.t. $\mathcal {C}(\mathfrak {S})$ are closed in the $J({R_{\mathfrak {S}}})$-adic topology. The main results show that conditions (A) and (B) can be characterized in terms of the injective hull of the right R-module $R/\mathfrak {S}$. The J-adic completion of a semilocal right Noetherian ring is also considered.References
- Carl Faith, Modules finite over endomorphism ring, Lectures on rings and modules (Tulane Univ. Ring and Operator Theory Year, 1970–1971, Vol. I), Lecture Notes in Math., Vol. 246, Springer, Berlin, 1972, pp. 145–189. MR 0342541
- A. W. Goldie, Localization in non-commutative noetherian rings, J. Algebra 5 (1967), 89–105. MR 207747, DOI 10.1016/0021-8693(67)90028-2
- Alfred W. Goldie, The structure of Noetherian rings, Lectures on rings and modules (Tulane Univ. Ring and Operator Theory Year, 1970–1971, Vol. I), Lecture Notes in Math., Vol. 246, Springer, Berlin, 1972, pp. 213–321. MR 0393118
- Oscar Goldman, Rings and modules of quotients, J. Algebra 13 (1969), 10–47. MR 245608, DOI 10.1016/0021-8693(69)90004-0
- Arun Vinayak Jategaonkar, A counter-example in ring theory and homological algebra, J. Algebra 12 (1969), 418–440. MR 240131, DOI 10.1016/0021-8693(69)90040-4
- Arun Vinayak Jategaonkar, Injective modules and classical localization in Noetherian rings, Bull. Amer. Math. Soc. 79 (1973), 152–157. MR 311697, DOI 10.1090/S0002-9904-1973-13136-2 —, The AR-property and localization in Noetherian rings, Notices Amer. Math. Soc. 19 (1972), A751. Abstract #72T-A274. —, The torsion theory at a semi-prime ideal (to appear).
- Toyonori Kato, Rings of $U$-dominant dimension $\geq 1$, Tohoku Math. J. (2) 21 (1969), 321–327. MR 248169, DOI 10.2748/tmj/1178243000
- Joachim Lambek and Gerhard Michler, The torsion theory at a prime ideal of a right Noetherian ring, J. Algebra 25 (1973), 364–389. MR 316487, DOI 10.1016/0021-8693(73)90051-3
- J. Lambek and G. Michler, Completions and classical localizations of right Noetherian rings, Pacific J. Math. 48 (1973), 133–140. MR 332856, DOI 10.2140/pjm.1973.48.133
- Eben Matlis, Injective modules over Noetherian rings, Pacific J. Math. 8 (1958), 511–528. MR 99360, DOI 10.2140/pjm.1958.8.511
- J. C. McConnell, The noetherian property in complete rings and modules, J. Algebra 12 (1969), 143–153. MR 240133, DOI 10.1016/0021-8693(69)90022-2
- Lance W. Small, Orders in Artinian rings, J. Algebra 4 (1966), 13–41. MR 200300, DOI 10.1016/0021-8693(66)90047-0
- Bo Stenström, Rings and modules of quotients, Lecture Notes in Mathematics, Vol. 237, Springer-Verlag, Berlin-New York, 1971. MR 0325663, DOI 10.1007/BFb0059904
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 190 (1974), 109-123
- MSC: Primary 16A08
- DOI: https://doi.org/10.1090/S0002-9947-1974-0349727-X
- MathSciNet review: 0349727