Global dimension of tiled orders over commutative noetherian domains
HTML articles powered by AMS MathViewer
- by Vasanti A. Jategaonkar
- Trans. Amer. Math. Soc. 190 (1974), 357-374
- DOI: https://doi.org/10.1090/S0002-9947-1974-0354754-2
- PDF | Request permission
Abstract:
Let R be a commutative noetherian domain and $\Lambda = ({\Lambda _{ij}}) \subseteq {M_n}(R)$ be a tiled R-order. The main result of this paper is the following Theorem. Let gl $\dim R = d < \infty$ and $\Lambda$ a triangular tiled R-order (i.e., ${\Lambda _{ij}} = R$ whenever $i \leq j$). Then the following three conditions are equivalent: (1) gl $\dim \Lambda < \infty$; (2) ${\Lambda _{i,i - 1}} = R$ or gl $\dim \;(R/{\Lambda _{i,i - 1}}) < \infty$, whenever $2 \leq i \leq n$; (3) gl $\dim \Lambda \leq d(n - 1)$. If $d = 1$ or 2 then the upper bound in the above theorem is best possible. We give a sufficient condition for an arbitrary tiled R-order $\Lambda$ to be of finite global dimension.References
- Maurice Auslander and Oscar Goldman, Maximal orders, Trans. Amer. Math. Soc. 97 (1960), 1–24. MR 117252, DOI 10.1090/S0002-9947-1960-0117252-7
- Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491
- N. Bourbaki, Éléments de mathématique. 23. Première partie: Les structures fondamentales de l’analyse. Livre II: Algèbre. Chapitre 8: Modules et anneaux semi-simples, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1261, Hermann, Paris, 1958 (French). MR 0098114
- K. L. Fields, On the global dimension of residue rings, Pacific J. Math. 32 (1970), 345–349. MR 271166, DOI 10.2140/pjm.1970.32.345
- Manabu Harada, Note on the dimension of modules and algebras, J. Inst. Polytech. Osaka City Univ. Ser. A 7 (1956), 17–27. MR 81269
- Nathan Jacobson, Structure of rings, Revised edition, American Mathematical Society Colloquium Publications, Vol. 37, American Mathematical Society, Providence, R.I., 1964. MR 0222106 A. V. Jategaonkar, Unpublished Lecture Notes, Cornell University, Ithaca, N. Y., 1971. Vasanti A. Jategaonkar, Global dimension of triangular orders over DVR, Notices Amer. Math. Soc. 18 (1971), 626. Abstract #71T-A106.
- Vasanti A. Jategaonkar, Global dimension of triangular orders over a discrete valuation ring, Proc. Amer. Math. Soc. 38 (1973), 8–14. MR 309988, DOI 10.1090/S0002-9939-1973-0309988-4 —, Tiled orders, Thesis, Cornell University, Ithaca, N. Y., 1973.
- Irving Kaplansky, Fields and rings, University of Chicago Press, Chicago, Ill.-London, 1969. MR 0269449
- Joachim Lambek, Lectures on rings and modules, Blaisdell Publishing Co. [Ginn and Co.], Waltham, Mass.-Toronto, Ont.-London, 1966. With an appendix by Ian G. Connell. MR 0206032
- Bruno J. Mueller, On semi-perfect rings, Illinois J. Math. 14 (1970), 464–467. MR 262299
- Joseph J. Rotman, Notes on homological algebras, Van Nostrand Reinhold Mathematical Studies, No. 26, Van Nostrand Reinhold Co., New York-Toronto-London, 1970. MR 0409590
- L. Silver, Noncommutative localizations and applications, J. Algebra 7 (1967), 44–76. MR 217114, DOI 10.1016/0021-8693(67)90067-1
- Lance W. Small, A change of rings theorem, Proc. Amer. Math. Soc. 19 (1968), 662–666. MR 223412, DOI 10.1090/S0002-9939-1968-0223412-X
- Richard B. Tarsy, Global dimension of orders, Trans. Amer. Math. Soc. 151 (1970), 335–340. MR 268226, DOI 10.1090/S0002-9947-1970-0268226-3
- Richard B. Tarsy, Global dimension of triangular orders, Proc. Amer. Math. Soc. 28 (1971), 423–426. MR 274527, DOI 10.1090/S0002-9939-1971-0274527-1
- Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0120249, DOI 10.1007/978-3-662-29244-0
- Mark Ramras, Maximal orders over regular local rings of dimension two, Trans. Amer. Math. Soc. 142 (1969), 457–479. MR 245572, DOI 10.1090/S0002-9947-1969-0245572-2
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 190 (1974), 357-374
- MSC: Primary 16A18
- DOI: https://doi.org/10.1090/S0002-9947-1974-0354754-2
- MathSciNet review: 0354754