Norm inequalities for the Littlewood-Paley function $g^{\ast } _{\lambda }$
HTML articles powered by AMS MathViewer
- by Benjamin Muckenhoupt and Richard L. Wheeden
- Trans. Amer. Math. Soc. 191 (1974), 95-111
- DOI: https://doi.org/10.1090/S0002-9947-1974-0387973-X
- PDF | Request permission
Abstract:
Weighted norm inequalities for ${L^p}$ and ${H^p}$ are derived for the Littlewood-Paley function $g_\lambda ^ \ast$. New results concerning the boundedness of this function are obtained, by a different method of proof, even in the unweighted case. The proof exhibits a connection between $g_\lambda ^\ast$ and a maximal function for harmonic functions which was introduced by C. Fefferman and E. M. Stein. A new and simpler way to determine the behavior of this maximal function is given.References
- R. R. Coifman, Distribution function inequalities for singular integrals, Proc. Nat. Acad. Sci. U.S.A. 69 (1972), 2838–2839. MR 303226, DOI 10.1073/pnas.69.10.2838
- R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250. MR 358205, DOI 10.4064/sm-51-3-241-250
- Charles Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9–36. MR 257819, DOI 10.1007/BF02394567
- C. Fefferman and E. M. Stein, $H^{p}$ spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137–193. MR 447953, DOI 10.1007/BF02392215
- R. F. Gundy and R. L. Wheeden, Weighted integral inequalities for the nontangential maximal function, Lusin area integral, and Walsh-Paley series, Studia Math. 49 (1973/74), 107–124. MR 352854, DOI 10.4064/sm-49-2-107-124
- Richard Hunt, Benjamin Muckenhoupt, and Richard Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227–251. MR 312139, DOI 10.1090/S0002-9947-1973-0312139-8
- Benjamin Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226. MR 293384, DOI 10.1090/S0002-9947-1972-0293384-6
- Benjamin Muckenhoupt, The equivalence of two conditions for weight functions, Studia Math. 49 (1973/74), 101–106. MR 350297, DOI 10.4064/sm-49-2-101-106
- Benjamin Muckenhoupt and Richard L. Wheeden, Weighted norm inequalities for singular and fractional integrals, Trans. Amer. Math. Soc. 161 (1971), 249–258. MR 285938, DOI 10.1090/S0002-9947-1971-0285938-7
- Marvin Rosenblum, Summability of Fourier series in $L^{p}(d\mu )$, Trans. Amer. Math. Soc. 105 (1962), 32–42. MR 160073, DOI 10.1090/S0002-9947-1962-0160073-1
- C. Segovia and R. L. Wheeden, On the function $g_{\lambda }^{\ast }$ and the heat equation, Studia Math. 37 (1970), 57–93. MR 285907, DOI 10.4064/sm-37-1-57-93
- Elias M. Stein, A maximal function with applications to Fourier series, Ann. of Math. (2) 68 (1958), 584–603. MR 100197, DOI 10.2307/1970157
- E. M. Stein, On limits of seqences of operators, Ann. of Math. (2) 74 (1961), 140–170. MR 125392, DOI 10.2307/1970308
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- A. Zygmund, On the Littlewood-Paley function $g^*(\theta )$, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 208–212. MR 77700, DOI 10.1073/pnas.42.4.208
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 191 (1974), 95-111
- MSC: Primary 44A15; Secondary 30A78, 42A92
- DOI: https://doi.org/10.1090/S0002-9947-1974-0387973-X
- MathSciNet review: 0387973