Kähler differentials and differential algebra in arbitrary characteristic
HTML articles powered by AMS MathViewer
- by Joseph Johnson
- Trans. Amer. Math. Soc. 192 (1974), 201-208
- DOI: https://doi.org/10.1090/S0002-9947-1974-0335482-6
- PDF | Request permission
Abstract:
Let L and K be differential fields with L an extension of K. It is shown how the module of Kähler differentials $\Omega _{L/K}^1$ can be used to “linearize” properties of a differential field extension $L/K$. This is done without restriction on the characteristic p and yields a theory which for $p \ne 0$ is no harder than the case $p = 0$. As an application a new proof of the Ritt basis theorem is given.References
- Solomon Lefschetz, Algebraic geometry, Princeton University Press, Princeton, N. J., 1953. MR 0056950, DOI 10.1515/9781400876686
- Joseph Johnson, A notion of Krull dimension for differential rings, Comment. Math. Helv. 44 (1969), 207–216. MR 242800, DOI 10.1007/BF02564523
- Joseph Johnson, Kähler differentials and differential algebra, Ann. of Math. (2) 89 (1969), 92–98. MR 238823, DOI 10.2307/1970810
- A. Seidenberg, Some basic theorems in partial differential algebra, Mem. Coll. Sci. Univ. Kyoto Ser. A. Math. 31 (1958), 1–8. MR 97631, DOI 10.1215/kjm/1250776945
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I, Inst. Hautes Études Sci. Publ. Math. 20 (1964), 259 (French). MR 173675
- E. R. Kolchin, Differential algebra and algebraic groups, Pure and Applied Mathematics, Vol. 54, Academic Press, New York-London, 1973. MR 0568864
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 192 (1974), 201-208
- MSC: Primary 12H05
- DOI: https://doi.org/10.1090/S0002-9947-1974-0335482-6
- MathSciNet review: 0335482