Convex hulls and extreme points of some families of univalent functions
HTML articles powered by AMS MathViewer
- by D. J. Hallenbeck
- Trans. Amer. Math. Soc. 192 (1974), 285-292
- DOI: https://doi.org/10.1090/S0002-9947-1974-0338338-8
- PDF | Request permission
Abstract:
The closed convex hull and extreme points are obtained for the functions which are convex, starlike, and close-to-convex and in addition are real on $( - 1,1)$. We also obtain this result for the functions which are convex in the direction of the imaginary axis and real on $( - 1,1)$. Integral representations are given for the hulls of these families in terms of probability measures on suitable sets. We also obtain such a representation for the functions $f(z)$ analytic in the unit disk, normalized and satisfying $\operatorname {Re} f’(z) > \alpha$ for $\alpha < 1$. These results are used to solve extremal problems. For example, the upper bounds are determined for the coefficients of a function subordinate to some function satisfying $\operatorname {Re} f’(z) > \alpha$.References
- L. Brickman, D. J. Hallenbeck, T. H. MacGregor, and D. R. Wilken, Convex hulls and extreme points of families of starlike and convex mappings, Trans. Amer. Math. Soc. 185 (1973), 413–428 (1974). MR 338337, DOI 10.1090/S0002-9947-1973-0338337-5
- L. Brickman, T. H. MacGregor, and D. R. Wilken, Convex hulls of some classical families of univalent functions, Trans. Amer. Math. Soc. 156 (1971), 91–107. MR 274734, DOI 10.1090/S0002-9947-1971-0274734-2
- R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965), 755–758. MR 178131, DOI 10.1090/S0002-9939-1965-0178131-2
- T. H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc. 104 (1962), 532–537. MR 140674, DOI 10.1090/S0002-9947-1962-0140674-7
- Thomas H. MacGregor, The radius of convexity for starlike functions of order ${1\over 2}$, Proc. Amer. Math. Soc. 14 (1963), 71–76. MR 150282, DOI 10.1090/S0002-9939-1963-0150282-6
- Thomas H. MacGregor, Applications of extreme-point theory to univalent functions, Michigan Math. J. 19 (1972), 361–376. MR 311885
- Zeev Nehari, Conformal mapping, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1952. MR 0045823 K. Noshiro, On the theory of schlicht functions, Journal of the Faculty of Science, Hokkaido Imperial University, Sapporo (1934/35), pp. 129-155.
- Pasquale Porcelli, Linear spaces of analytic functions, Rand McNally & Co., Chicago, Ill., 1966. MR 0259581
- Malcolm I. S. Robertson, On the theory of univalent functions, Ann. of Math. (2) 37 (1936), no. 2, 374–408. MR 1503286, DOI 10.2307/1968451
- M. S. Robertson, Analytic Functions Star-Like in One Direction, Amer. J. Math. 58 (1936), no. 3, 465–472. MR 1507169, DOI 10.2307/2370963
- Werner Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc. (2) 48 (1943), 48–82. MR 8625, DOI 10.1112/plms/s2-48.1.48 D. B. Shaffer, Analytic functions $f(z)$ with Re $f(z) > 1/2$ and applications, Notices Amer. Math. Soc. 19 (1972), A704-A705. Abstract #727-B287.
- Angus E. Taylor, Introduction to functional analysis, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1958. MR 0098966
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 192 (1974), 285-292
- MSC: Primary 30A32
- DOI: https://doi.org/10.1090/S0002-9947-1974-0338338-8
- MathSciNet review: 0338338