van Kampen’s theorem for $n$-stage covers
HTML articles powered by AMS MathViewer
- by J. C. Chipman
- Trans. Amer. Math. Soc. 192 (1974), 357-370
- DOI: https://doi.org/10.1090/S0002-9947-1974-0339122-1
- PDF | Request permission
Abstract:
A version of van Kampen’s theorem is obtained for covers whose members do not share a common point and whose pairwise intersection need not be connected.References
- J. C. Chipman, Subgroups of free products with amalgamated subgroups: A topological approach, Trans. Amer. Math. Soc. 181 (1973), 77–87. MR 417294, DOI 10.1090/S0002-9947-1973-0417294-7
- Richard H. Crowell, On the van Kampen theorem, Pacific J. Math. 9 (1959), 43–50. MR 105104, DOI 10.2140/pjm.1959.9.43
- A. Karrass and D. Solitar, The subgroups of a free product of two groups with an amalgamated subgroup, Trans. Amer. Math. Soc. 150 (1970), 227–255. MR 260879, DOI 10.1090/S0002-9947-1970-0260879-9
- Lee Neuwirth, The algebraic determination of the genus of knots, Amer. J. Math. 82 (1960), 791–798. MR 120648, DOI 10.2307/2372940 J. Serre, Groups discrets, Notes written at Collège de France, 1968/69. H. Seifert, Konstruktion dreidimensionaler geschlossen Räume, Ber. Verh. Sächs. Akad. Wiss. 83 (1931), 26-66.
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112 E. R. van Kampen, On the connection between the fundamental groups of some related spaces, Amer. J. Math. 55 (1933), 261-267.
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 192 (1974), 357-370
- MSC: Primary 55A10
- DOI: https://doi.org/10.1090/S0002-9947-1974-0339122-1
- MathSciNet review: 0339122