## Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{tt} = -Au + \mathcal {F}(u)$

HTML articles powered by AMS MathViewer

- by Howard A. Levine PDF
- Trans. Amer. Math. Soc.
**192**(1974), 1-21 Request permission

## Abstract:

For the equation in the title, let*P*and

*A*be positive semidefinite operators (with

*P*strictly positive) defined on a dense subdomain $D \subseteq H$, a Hilbert space. Let

*D*be equipped with a Hilbert space norm and let the imbedding be continuous. Let $\mathcal {F}:D \to H$ be a continuously differentiable gradient operator with associated potential function $\mathcal {G}$. Assume that $(x,\mathcal {F}(x)) \geq 2(2\alpha + 1)\mathcal {G}(x)$ for all $x \in D$ and some $\alpha > 0$. Let $E(0) = \tfrac {1}{2}[({u_0},A{u_0}) + ({v_0},P{v_0})]$ where ${u_0} = u(0),{v_0} = {u_t}(0)$ and $u:[0,T) \to D$ be a solution to the equation in the title. The following statements hold: If $\mathcal {G}({u_0}) > E(0)$, then ${\lim _{t \to {T^ - }}}(u,Pu) = + \infty$ for some $T < \infty$. If $({u_0},P{v_0}) > 0,0 < E(0) - \mathcal {G}({u_0}) < \alpha {({u_0},P{v_0})^2}/4(2\alpha + 1)({u_0},P{u_0})$ and if

*u*exists on $[0,\infty )$, then (

*u,Pu*) grows at least exponentially. If $({u_0},P{v_0}) > 0$ and $\alpha {({u_0},P{v_0})^2}/4(2\alpha + 1)({u_0},P{u_0}) \leq E(0) - \mathcal {G}({u_0}) < \tfrac {1}{2}{({u_0},P{v_0})^2}/({u_0},P{u_0})$ and if the solution exists on $[0,\infty )$, then (

*u,Pu*) grows at least as fast as ${t^2}$. A number of examples are given.

## References

- Norman Bazley and Bruno Zwahlen,
*A branch of positive solutions of nonlinear eigenvalue problems*, Manuscripta Math.**2**(1970), 365–374. MR**268731**, DOI 10.1007/BF01719592 - Norman Bazley and Bruno Zwahlen,
*Estimation of the bifurcation coefficient for nonlinear eigenvalue problems*, Z. Angew. Math. Phys.**20**(1969), 281–288 (English, with German summary). MR**253099**, DOI 10.1007/BF01590423 - Stephen Berman,
*Abstract wave equations with finite velocity of propagation*, Bull. Amer. Math. Soc.**77**(1971), 1011–1013. MR**312098**, DOI 10.1090/S0002-9904-1971-12839-2 - Avner Friedman,
*Partial differential equations*, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969. MR**0445088** - Fritz John,
*Continuous dependence on data for solutions of partial differential equations with a presribed bound*, Comm. Pure Appl. Math.**13**(1960), 551–585. MR**130456**, DOI 10.1002/cpa.3160130402 - Konrad Jörgens,
*Das Anfangswertproblem im Grossen für eine Klasse nichtlinearer Wellengleichungen*, Math. Z.**77**(1961), 295–308 (German). MR**130462**, DOI 10.1007/BF01180181
—, - J. B. Keller,
*On solutions of $\Delta u=f(u)$*, Comm. Pure Appl. Math.**10**(1957), 503–510. MR**91407**, DOI 10.1002/cpa.3160100402 - J. B. Keller,
*On solutions of nonlinear wave equations*, Comm. Pure Appl. Math.**10**(1957), 523–530. MR**96889**, DOI 10.1002/cpa.3160100404
R. J. Knops, H. A. Levine and L. E. Payne, - Howard Allen Levine,
*Logarithmic convexity and the Cauchy problem for some abstract second order differential inequalities*, J. Differential Equations**8**(1970), 34–55. MR**259303**, DOI 10.1016/0022-0396(70)90038-0 - Howard A. Levine and Lawrence E. Payne,
*Nonexistence theorems for the heat equation with nonlinear boundary conditions and for the porous medium equation backward in time*, J. Differential Equations**16**(1974), 319–334. MR**470481**, DOI 10.1016/0022-0396(74)90018-7 - A. E. H. Love,
*A treatise on the Mathematical Theory of Elasticity*, Dover Publications, New York, 1944. Fourth Ed. MR**0010851** - David H. Sattinger,
*Stability of nonlinear hyperbolic equations*, Arch. Rational Mech. Anal.**28**(1967/68), 226–244. MR**224968**, DOI 10.1007/BF00250928 - Walter Alexander Strauss,
*The energy method in nonlinear partial differential equations*, Notas de Matemática, No. 47, Instituto de Matemática Pura e Aplicada, Conselho Nacional de Pesquisas, Rio de Janeiro, 1969. MR**0273170**
H. A. Levine,

*Nonlinear wave equations*, University of Colorado Report, Boulder, Col., 1970.

*Nonexistence, instability and growth theorems for solutions of a class of abstract nonlinear equations with applications to nonlinear elastodynamics*(to appear).

*Some nonexistence and instability theorems for solutions of formally parabolic equations of the form*$P{u_t} = - Au + \mathcal {F}(u)$, Arch. Rational Mech. Anal. (in print).

## Additional Information

- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**192**(1974), 1-21 - MSC: Primary 35L60; Secondary 47H15
- DOI: https://doi.org/10.1090/S0002-9947-1974-0344697-2
- MathSciNet review: 0344697