Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{tt} = -Au + \mathcal {F}(u)$
HTML articles powered by AMS MathViewer
- by Howard A. Levine
- Trans. Amer. Math. Soc. 192 (1974), 1-21
- DOI: https://doi.org/10.1090/S0002-9947-1974-0344697-2
- PDF | Request permission
Abstract:
For the equation in the title, let P and A be positive semidefinite operators (with P strictly positive) defined on a dense subdomain $D \subseteq H$, a Hilbert space. Let D be equipped with a Hilbert space norm and let the imbedding be continuous. Let $\mathcal {F}:D \to H$ be a continuously differentiable gradient operator with associated potential function $\mathcal {G}$. Assume that $(x,\mathcal {F}(x)) \geq 2(2\alpha + 1)\mathcal {G}(x)$ for all $x \in D$ and some $\alpha > 0$. Let $E(0) = \tfrac {1}{2}[({u_0},A{u_0}) + ({v_0},P{v_0})]$ where ${u_0} = u(0),{v_0} = {u_t}(0)$ and $u:[0,T) \to D$ be a solution to the equation in the title. The following statements hold: If $\mathcal {G}({u_0}) > E(0)$, then ${\lim _{t \to {T^ - }}}(u,Pu) = + \infty$ for some $T < \infty$. If $({u_0},P{v_0}) > 0,0 < E(0) - \mathcal {G}({u_0}) < \alpha {({u_0},P{v_0})^2}/4(2\alpha + 1)({u_0},P{u_0})$ and if u exists on $[0,\infty )$, then (u,Pu) grows at least exponentially. If $({u_0},P{v_0}) > 0$ and $\alpha {({u_0},P{v_0})^2}/4(2\alpha + 1)({u_0},P{u_0}) \leq E(0) - \mathcal {G}({u_0}) < \tfrac {1}{2}{({u_0},P{v_0})^2}/({u_0},P{u_0})$ and if the solution exists on $[0,\infty )$, then (u,Pu) grows at least as fast as ${t^2}$. A number of examples are given.References
- Norman Bazley and Bruno Zwahlen, A branch of positive solutions of nonlinear eigenvalue problems, Manuscripta Math. 2 (1970), 365–374. MR 268731, DOI 10.1007/BF01719592
- Norman Bazley and Bruno Zwahlen, Estimation of the bifurcation coefficient for nonlinear eigenvalue problems, Z. Angew. Math. Phys. 20 (1969), 281–288 (English, with German summary). MR 253099, DOI 10.1007/BF01590423
- Stephen Berman, Abstract wave equations with finite velocity of propagation, Bull. Amer. Math. Soc. 77 (1971), 1011–1013. MR 312098, DOI 10.1090/S0002-9904-1971-12839-2
- Avner Friedman, Partial differential equations, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969. MR 0445088
- Fritz John, Continuous dependence on data for solutions of partial differential equations with a presribed bound, Comm. Pure Appl. Math. 13 (1960), 551–585. MR 130456, DOI 10.1002/cpa.3160130402
- Konrad Jörgens, Das Anfangswertproblem im Grossen für eine Klasse nichtlinearer Wellengleichungen, Math. Z. 77 (1961), 295–308 (German). MR 130462, DOI 10.1007/BF01180181 —, Nonlinear wave equations, University of Colorado Report, Boulder, Col., 1970.
- J. B. Keller, On solutions of $\Delta u=f(u)$, Comm. Pure Appl. Math. 10 (1957), 503–510. MR 91407, DOI 10.1002/cpa.3160100402
- J. B. Keller, On solutions of nonlinear wave equations, Comm. Pure Appl. Math. 10 (1957), 523–530. MR 96889, DOI 10.1002/cpa.3160100404 R. J. Knops, H. A. Levine and L. E. Payne, Nonexistence, instability and growth theorems for solutions of a class of abstract nonlinear equations with applications to nonlinear elastodynamics (to appear).
- Howard Allen Levine, Logarithmic convexity and the Cauchy problem for some abstract second order differential inequalities, J. Differential Equations 8 (1970), 34–55. MR 259303, DOI 10.1016/0022-0396(70)90038-0
- Howard A. Levine and Lawrence E. Payne, Nonexistence theorems for the heat equation with nonlinear boundary conditions and for the porous medium equation backward in time, J. Differential Equations 16 (1974), 319–334. MR 470481, DOI 10.1016/0022-0396(74)90018-7
- A. E. H. Love, A treatise on the Mathematical Theory of Elasticity, Dover Publications, New York, 1944. Fourth Ed. MR 0010851
- David H. Sattinger, Stability of nonlinear hyperbolic equations, Arch. Rational Mech. Anal. 28 (1967/68), 226–244. MR 224968, DOI 10.1007/BF00250928
- Walter Alexander Strauss, The energy method in nonlinear partial differential equations, Notas de Matemática, No. 47, Instituto de Matemática Pura e Aplicada, Conselho Nacional de Pesquisas, Rio de Janeiro, 1969. MR 0273170 H. A. Levine, Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $P{u_t} = - Au + \mathcal {F}(u)$, Arch. Rational Mech. Anal. (in print).
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 192 (1974), 1-21
- MSC: Primary 35L60; Secondary 47H15
- DOI: https://doi.org/10.1090/S0002-9947-1974-0344697-2
- MathSciNet review: 0344697