Groups, semilattices and inverse semigroups. I, II
HTML articles powered by AMS MathViewer
- by D. B. McAlister
- Trans. Amer. Math. Soc. 192 (1974), 227-244
- DOI: https://doi.org/10.1090/S0002-9947-1974-0357660-2
- PDF | Request permission
Abstract:
An inverse semigroup S is called proper if the equations $ea = e = {e^2}$ together imply ${a^2} = a$ for each a, $a,e \in S$. In this paper a construction is given for a large class of proper inverse semigroups in terms of groups and partially ordered sets; the semigroups in this class are called P-semigroups. It is shown that every inverse semigroup divides a P-semigroup in the sense that it is the image, under an idempotent separating homomorphism, of a full subsemigroup of a P-semigroup. Explicit divisions of this type are given for $\omega$-bisimple semigroups, proper bisimple inverse semigroups, semilattices of groups and Brandt semigroups.References
- Janet Ault and Mario Petrich, The structure of $\omega$-regular semigroups, Bull. Amer. Math. Soc. 77 (1971), 196–199. MR 269759, DOI 10.1090/S0002-9904-1971-12677-0
- A. H. Clifford, Semigroups admitting relative inverses, Ann. of Math. (2) 42 (1941), 1037–1049. MR 5744, DOI 10.2307/1968781
- A. Coudron, Sur les extensions de demi-groupes réciproques, Bull. Soc. Roy. Sci. Liège 37 (1968), 409–419 (French, with English summary). MR 240227
- H. D’Alarcao, Idempotent-separating extensions of inverse semigroups, J. Austral. Math. Soc. 9 (1969), 211–217. MR 0238970, DOI 10.1017/S1446788700005784
- J. M. Howie, The maximum idempotent-separating congruence on an inverse semigroup, Proc. Edinburgh Math. Soc. (2) 14 (1964/65), 71–79. MR 163976, DOI 10.1017/S0013091500011251
- B. P. Kočin, The structure of inverse ideal-simple $omega$-semigroups, Vestnik Leningrad. Univ. 23 (1968), no. 7, 41–50 (Russian, with English summary). MR 0227296
- Gérard Lallement, Structure d’une classe de demi-groupes inverses $0$-simples, C. R. Acad. Sci. Paris Sér. A-B 271 (1970), A8–A11 (French). MR 268305
- D. B. McAlister, $0$-bisimple inverse semigroups, Proc. London Math. Soc. (3) 28 (1974), 193–221. MR 364507, DOI 10.1112/plms/s3-28.2.193
- D. B. McAlister and R. McFadden, Zig-zag representations and inverse semigroups, J. Algebra 32 (1974), 178–206. MR 369590, DOI 10.1016/0021-8693(74)90180-X
- W. D. Munn, A class of irreducible matrix representations of an arbitrary inverse semigroup, Proc. Glasgow Math. Assoc. 5 (1961), 41–48. MR 153762, DOI 10.1017/S2040618500034286
- W. D. Munn, Uniform semilattices and bisimple inverse semigroups, Quart. J. Math. Oxford Ser. (2) 17 (1966), 151–159. MR 199292, DOI 10.1093/qmath/17.1.151
- W. D. Munn, Regular $\omega$-semigroups, Glasgow Math. J. 9 (1968), 46–66. MR 229742, DOI 10.1017/S0017089500000288
- W. D. Munn, Fundamental inverse semigroups, Quart. J. Math. Oxford Ser. (2) 21 (1970), 157–170. MR 262402, DOI 10.1093/qmath/21.2.157
- Walter Douglas Munn, On simple inverse semigroups, Semigroup Forum 1 (1970), no. 1, 63–74. MR 263954, DOI 10.1007/BF02573020
- W. D. Munn and N. R. Reilly, Congruences on a bisimple $\omega$-semigroup, Proc. Glasgow Math. Assoc. 7 (1966), 184–192. MR 199291, DOI 10.1017/S2040618500035413
- G. B. Preston, Inverse semi-groups with minimal right ideals, J. London Math. Soc. 29 (1954), 404–411. MR 64037, DOI 10.1112/jlms/s1-29.4.404
- N. R. Reilly, Bisimple $\omega$-semigroups, Proc. Glasgow Math. Assoc. 7 (1966), 160–167 (1966). MR 190252, DOI 10.1017/S2040618500035346
- N. R. Reilly, Bisimple inverse semi-groups, Trans. Amer. Math. Soc. 132 (1968), 101–114. MR 227292, DOI 10.1090/S0002-9947-1968-0227292-2
- John Rhodes, Algebraic theory of finite semigroups. Structure numbers and structure theorems for finite semigroups, Semigroups (Proc. Sympos., Wayne State Univ., Detroit, Mich., 1968) Academic Press, New York, 1969, pp. 125–162. MR 0281817
- H. E. Scheiblich, Free inverse semigroups, Proc. Amer. Math. Soc. 38 (1973), 1–7. MR 310093, DOI 10.1090/S0002-9939-1973-0310093-1
- V. V. Vagner, Generalized groups, Doklady Akad. Nauk SSSR (N.S.) 84 (1952), 1119–1122 (Russian). MR 0048425
- R. J. Warne, $I$-bisimple semigroups, Trans. Amer. Math. Soc. 130 (1968), 367–386. MR 223476, DOI 10.1090/S0002-9947-1968-0223476-8
- R. J. Warne, $\omega ^{n}I$-bisimple semigroups, Acta Math. Acad. Sci. Hungar. 21 (1970), 121–150. MR 258998, DOI 10.1007/BF02022496
- R. J. Warne, $I$-regular semigroups, Math. Japon. 15 (1970), 91–100. MR 288200
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 192 (1974), 227-244
- MSC: Primary 20M10
- DOI: https://doi.org/10.1090/S0002-9947-1974-0357660-2
- MathSciNet review: 0357660