A probabilistic approach to $H^{p}(R^{d})$
HTML articles powered by AMS MathViewer
- by D. Stroock and S. R. S. Varadhan
- Trans. Amer. Math. Soc. 192 (1974), 245-260
- DOI: https://doi.org/10.1090/S0002-9947-1974-0365696-0
- PDF | Request permission
Abstract:
The relationship between ${H^p}({R^d}),1 \leq p < \infty$, and the integrability of certain functionals of Brownian motion is established using the connection between probabilistic and analytic notions of functions with bounded mean oscillation. An application of this relationship is given in the derivation of an interpolation theorem for operators taking ${H^1}({R^d})$ to ${L^1}({R^d})$.References
- D. L. Burkholder and R. F. Gundy, Extrapolation and interpolation of quasi-linear operators on martingales, Acta Math. 124 (1970), 249–304. MR 440695, DOI 10.1007/BF02394573
- D. L. Burkholder, R. F. Gundy, and M. L. Silverstein, A maximal function characterization of the class $H^{p}$, Trans. Amer. Math. Soc. 157 (1971), 137–153. MR 274767, DOI 10.1090/S0002-9947-1971-0274767-6
- C. Fefferman and E. M. Stein, $H^{p}$ spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137–193. MR 447953, DOI 10.1007/BF02392215 A. Garsia, Notes on B.M.O. martingales and related topics (to appear).
- R. K. Getoor and M. J. Sharpe, Conformal martingales, Invent. Math. 16 (1972), 271–308. MR 305473, DOI 10.1007/BF01425714
- Lars Hörmander, Estimates for translation invariant operators in $L^{p}$ spaces, Acta Math. 104 (1960), 93–140. MR 121655, DOI 10.1007/BF02547187
- Satoru Igari, An extension of the interpolation theorem of Marcinkiewicz, Proc. Japan Acad. 38 (1962), 731–734. MR 147815
- F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426. MR 131498, DOI 10.1002/cpa.3160140317
- K. Murali Rao, On decomposition theorems of Meyer, Math. Scand. 24 (1969), 66–78. MR 275510, DOI 10.7146/math.scand.a-10920
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR 0304972
- Daniel W. Stroock and S. R. S. Varadhan, Diffusion processes with continuous coefficients. I, Comm. Pure Appl. Math. 22 (1969), 345–400. MR 253426, DOI 10.1002/cpa.3160220304
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 192 (1974), 245-260
- MSC: Primary 60G45; Secondary 42A36
- DOI: https://doi.org/10.1090/S0002-9947-1974-0365696-0
- MathSciNet review: 0365696