The norm of the $L^{p}$-Fourier transform on unimodular groups
HTML articles powered by AMS MathViewer
- by Bernard Russo
- Trans. Amer. Math. Soc. 192 (1974), 293-305
- DOI: https://doi.org/10.1090/S0002-9947-1974-0435731-X
- PDF | Request permission
Abstract:
We discuss sharpness in the Hausdorff Young theorem for unimodular groups. First the functions on unimodular locally compact groups for which equality holds in the Hausdorff Young theorem are determined. Then it is shown that the Hausdorff Young theorem is not sharp on any unimodular group which contains the real line as a direct summand, or any unimodular group which contains an Abelian normal subgroup with compact quotient as a semidirect summand. A key tool in the proof of the latter statement is a Hausdorff Young theorem for integral operators, which is of independent interest. Whether the Hausdorff Young theorem is sharp on a particular connected unimodular group is an interesting open question which was previously considered in the literature only for groups which were compact or locally compact Abelian.References
- A. Benedek and R. Panzone, The space $L^{p}$, with mixed norm, Duke Math. J. 28 (1961), 301–324. MR 126155, DOI 10.1215/S0012-7094-61-02828-9
- Jacques Dixmier, Les algèbres d’opérateurs dans l’espace hilbertien (Algèbres de von Neumann), Cahiers Scientifiques, Fasc. XXV, Gauthier-Villars, Paris, 1957 (French). MR 0094722
- Pierre Eymard, L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181–236 (French). MR 228628, DOI 10.24033/bsmf.1607
- Siegfried Grosser and Martin Moskowitz, On central topological groups, Trans. Amer. Math. Soc. 127 (1967), 317–340. MR 209394, DOI 10.1090/S0002-9947-1967-0209394-9
- Roger Godement, Sur la transformation de Fourier dans les groupes discrets, C. R. Acad. Sci. Paris 228 (1949), 627–628 (French). MR 28323
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Die Grundlehren der mathematischen Wissenschaften, Band 152, Springer-Verlag, New York-Berlin, 1970. MR 0262773
- Edwin Hewitt and Karl Stromberg, Real and abstract analysis. A modern treatment of the theory of functions of a real variable, Springer-Verlag, New York-Berlin, 1969. Second printing corrected. MR 0274666
- I. I. Hirschman Jr., A maximal problem in harmonic analysis. II, Pacific J. Math. 9 (1959), 525–540. MR 131724, DOI 10.2140/pjm.1959.9.525
- R. A. Kunze, $L_{p}$ Fourier transforms on locally compact unimodular groups, Trans. Amer. Math. Soc. 89 (1958), 519–540. MR 100235, DOI 10.1090/S0002-9947-1958-0100235-1
- R. A. Kunze and E. M. Stein, Uniformly bounded representations and harmonic analysis of the $2\times 2$ real unimodular group, Amer. J. Math. 82 (1960), 1–62. MR 163988, DOI 10.2307/2372876
- Ronald L. Lipsman, Harmonic analysis on $\textrm {SL}(n,\,\textbf {C})$, J. Functional Analysis 3 (1969), 126–155. MR 0237716, DOI 10.1016/0022-1236(69)90055-x
- I. E. Segal, An extension of Plancherel’s formula to separable unimodular groups, Ann. of Math. (2) 52 (1950), 272–292. MR 36765, DOI 10.2307/1969470
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- W. Forrest Stinespring, Integration theorems for gages and duality for unimodular groups, Trans. Amer. Math. Soc. 90 (1959), 15–56. MR 102761, DOI 10.1090/S0002-9947-1959-0102761-9
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 192 (1974), 293-305
- MSC: Primary 43A15
- DOI: https://doi.org/10.1090/S0002-9947-1974-0435731-X
- MathSciNet review: 0435731