Some thin sets in discrete abelian groups
HTML articles powered by AMS MathViewer
- by Ron C. Blei
- Trans. Amer. Math. Soc. 193 (1974), 55-65
- DOI: https://doi.org/10.1090/S0002-9947-1974-0340980-5
- PDF | Request permission
Abstract:
Let $\Gamma$ be a discrete abelian group, and $E \subset \Gamma$. For $F \subset E$, we say that $F \in \mathcal {P}(E)$, if for all $\Lambda$, finite subsets of $\Gamma ,0 \notin \Lambda ,\Lambda + F \cap F$ is finite. Having defined the Banach algebra, $\tilde A(E) = c(E) \cap B(E)$, we prove the following: (i) $E \subset \Gamma$ is a Sidon set if and only if every $F \in \mathcal {P}(E)$ is a Sidon set; (ii) $E \in \mathcal {P}(\Gamma )$ is a Sidon set if and only if $\tilde A(E) = A(E)$.References
- Ron C. Blei, On trigonometric series associated with separable, translation invariant subspaces of $L^{\infty }(G)$, Trans. Amer. Math. Soc. 173 (1972), 491–499. MR 313715, DOI 10.1090/S0002-9947-1972-0313715-8
- Myriam Déchamps-Gondim, Ensembles de Sidon topologiques, Ann. Inst. Fourier (Grenoble) 22 (1972), no. 3, 51–79 (French, with English summary). MR 340981, DOI 10.5802/aif.424
- Raouf Doss, On the transform of a singular or an absolutely continuous measure, Proc. Amer. Math. Soc. 19 (1968), 361–363. MR 222569, DOI 10.1090/S0002-9939-1968-0222569-4
- Stephen William Drury, Sur les ensembles de Sidon, C. R. Acad. Sci. Paris Sér. A-B 271 (1970), A162–A163 (French). MR 271647
- Colin C. Graham, On a Banach algebra of Varopoulos, J. Functional Analysis 4 (1969), 317–328. MR 0251541, DOI 10.1016/0022-1236(69)90001-9
- Yitzhak Katznelson, An introduction to harmonic analysis, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0248482
- Yitzhak Katznelson and Carruth McGehee, Measures and pseudomeasures on compact subsets of the line, Math. Scand. 23 (1968), 57–68 (1969). MR 251460, DOI 10.7146/math.scand.a-10897
- Yitzhak Katznelson and Carruth McGehee, Some Banach algebras associated with quotients of $L^{1}\,(R)$, Indiana Univ. Math. J. 21 (1971/72), 419–436. MR 290039, DOI 10.1512/iumj.1971.21.21033
- Walter Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0152834
- N. Th. Varopoulos, Sets of multiplicity in locally compact abelian groups, Ann. Inst. Fourier (Grenoble) 16 (1966), no. fasc. 2, 123–158 (English, with French summary). MR 212508, DOI 10.5802/aif.238
- N. Th. Varopoulos, On a problem of A. Beurling, J. Functional Analysis 2 (1968), 24–30. MR 0241982, DOI 10.1016/0022-1236(68)90023-2
- N. Th. Varopoulos, Groups of continuous functions in harmonic analysis, Acta Math. 125 (1970), 109–154. MR 282155, DOI 10.1007/BF02392332
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 193 (1974), 55-65
- MSC: Primary 43A46
- DOI: https://doi.org/10.1090/S0002-9947-1974-0340980-5
- MathSciNet review: 0340980