Invariant measures and growth conditions
HTML articles powered by AMS MathViewer
- by Joseph Max Rosenblatt
- Trans. Amer. Math. Soc. 193 (1974), 33-53
- DOI: https://doi.org/10.1090/S0002-9947-1974-0342955-9
- PDF | Request permission
Abstract:
Let G be a finitely-generated group acting on a set X and let A be a nonempty subset of X. If G has polynomial growth then there exists a finitely-additive G-invariant positive extended real-valued measure $\mu$ defined on all subsets of X such that $\mu (A) = 1$. When G is solvable, it has polynomial growth if and only if it does not contain a free subsemigroup on two generators. If G contains a free subsemigroup S on two generators, then G has exponential growth and there does not exist a measure $\mu$ as above with G acting on itself by multiplication and $A = S$.References
- H. Bass, The degree of polynomial growth of finitely generated nilpotent groups, Proc. London Math. Soc. (3) 25 (1972), 603–614. MR 379672, DOI 10.1112/plms/s3-25.4.603
- A. I. Borevich and I. R. Shafarevich, Number theory, Pure and Applied Mathematics, Vol. 20, Academic Press, New York-London, 1966. Translated from the Russian by Newcomb Greenleaf. MR 0195803
- W. R. Emerson and F. P. Greenleaf, Asymptotic behavior of products $C^{p}=C+\cdots +C$ in locally compact abelian groups, Trans. Amer. Math. Soc. 145 (1969), 171–204. MR 249535, DOI 10.1090/S0002-9947-1969-0249535-2 A. H. Frey, Studies in amenable semigroups, Dissertation, University of Washington, Seattle, Wash., 1960.
- Frederick P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Mathematical Studies, No. 16, Van Nostrand Reinhold Co., New York-Toronto-London, 1969. MR 0251549
- M. Hochster, Subsemigroups of amenable groups, Proc. Amer. Math. Soc. 21 (1969), 363–364. MR 240223, DOI 10.1090/S0002-9939-1969-0240223-0
- Kenneth Hoffman and Ray Kunze, Linear algebra, Prentice-Hall Mathematics Series, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1961. MR 0125849
- A. Hulanicki, On symmetry of group algebras of discrete nilpotent groups, Studia Math. 35 (1970), 207–219 (errata insert). MR 278082, DOI 10.4064/sm-35-2-207-219
- A. Hulanicki, On positive functionals on a group algebra multiplicative on a subalgebra, Studia Math. 37 (1970/71), 163–171. MR 310547, DOI 10.4064/sm-37-2-163-171
- Joe W. Jenkins, On the spectral radius of elements in a group algebra, Illinois J. Math. 15 (1971), 551–554. MR 287332
- J. W. Jenkins, Growth of connected locally compact groups, J. Functional Analysis 12 (1973), 113–127. MR 0349895, DOI 10.1016/0022-1236(73)90092-x
- Wilhelm Magnus, Abraham Karrass, and Donald Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations, Interscience Publishers [John Wiley & Sons], New York-London-Sydney, 1966. MR 0207802
- A. I. Mal′cev, On some classes of infinite soluble groups, Mat. Sbornik N.S. 28(70) (1951), 567–588 (Russian). MR 0043088
- J. Milnor, A note on curvature and fundamental group, J. Differential Geometry 2 (1968), 1–7. MR 232311, DOI 10.4310/jdg/1214501132
- John Milnor, Growth of finitely generated solvable groups, J. Differential Geometry 2 (1968), 447–449. MR 244899 N. Rickert, Groups with the fixed point property, Dissertation, Yale University, New Haven, Conn., 1965.
- Joseph Max Rosenblatt, A generalization of Følner’s condition, Math. Scand. 33 (1973), 153–170. MR 333068, DOI 10.7146/math.scand.a-11481
- Joseph J. Rotman, The theory of groups. An introduction, Allyn and Bacon, Inc., Boston, Mass., 1965. MR 0204499 J. von Neumann, Zur Allgemeinen Theorie der Masses, Fund. Math. 13 (1929), 73-116.
- Joseph A. Wolf, Growth of finitely generated solvable groups and curvature of Riemannian manifolds, J. Differential Geometry 2 (1968), 421–446. MR 248688
- S. Balcerzyk and Jan Mycielski, On the existence of free subgroups in topological groups, Fund. Math. 44 (1957), 303–308. MR 94417, DOI 10.4064/fm-44-3-303-308
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 193 (1974), 33-53
- MSC: Primary 43A07; Secondary 20F15
- DOI: https://doi.org/10.1090/S0002-9947-1974-0342955-9
- MathSciNet review: 0342955