Extremal problems of distance geometry related to energy integrals
HTML articles powered by AMS MathViewer
- by Ralph Alexander and Kenneth B. Stolarsky
- Trans. Amer. Math. Soc. 193 (1974), 1-31
- DOI: https://doi.org/10.1090/S0002-9947-1974-0350629-3
- PDF | Request permission
Abstract:
Let K be a compact set, $\mathcal {M}$ a prescribed family of (possibly signed) Borel measures of total mass one supported by K, and f a continuous real-valued function on $K \times K$. We study the problem of determining for which $\mu \in \mathcal {M}$ (if any) the energy integral $I(K,\mu ) = \smallint _K {\smallint _K {f(x,y)d\mu (x)d\mu (y)} }$ is maximal, and what this maximum is. The more symmetry K has, the more we can say; our results are best when K is a sphere. In particular, when $\mathcal {M}$ is atomic we obtain good upper bounds for the sums of powers of all $(_2^n)$ distances determined by n points on the surface of a sphere. We make use of results from Schoenberg’s theory of metric embedding, and of techniques devised by Pólya and Szegö for the calculation of transfinite diameters.References
- R. Alexander, On the sum of distances between $n$ points on a sphere, Acta Math. Acad. Sci. Hungar. 23 (1972), 443–448. MR 312395, DOI 10.1007/BF01896964
- Göran Björck, Distributions of positive mass, which maximize a certain generalized energy integral, Ark. Mat. 3 (1956), 255–269. MR 78470, DOI 10.1007/BF02589412 L. M. Blumenthal, Distance geometries, University of Missouri Studies, Columbia, 1938.
- Leonard M. Blumenthal, Theory and applications of distance geometry, Oxford, at the Clarendon Press, 1953. MR 0054981
- Leonard M. Blumenthal, A modern view of geometry, A Series of Undergraduate Books in Mathematics, W. H. Freeman and Co., San Francisco-London, 1961. MR 0126185 A. Erdélyi, ed., Higher transcendental functions. Vol. 2, McGraw-Hill, New York, 1955. MR 15, 419.
- L. Fejes Tóth, On the sum of distances determined by a pointset, Acta Math. Acad. Sci. Hungar. 7 (1956), 397–401 (English, with Russian summary). MR 107212, DOI 10.1007/BF02020534
- L. Fejes Tóth, Über eine Punktverteilung auf der Kugel, Acta Math. Acad. Sci. Hungar. 10 (1959), 13–19 (unbound insert) (German, with Russian summary). MR 105654, DOI 10.1007/BF02063286
- Branko Grünbaum and L. M. Kelly, Metrically homogeneous sets, Israel J. Math. 6 (1968), 183–197. MR 244867, DOI 10.1007/BF02760183
- Branko Grünbaum and L. M. Kelly, “Metrically homogeneous sets”: Corrigendum, Israel J. Math. 8 (1970), 93–95. MR 268782, DOI 10.1007/BF02771557
- Einar Hille, Analytic function theory. Vol. II, Introductions to Higher Mathematics, Ginn and Company, Boston, Mass.-New York-Toronto, 1962. MR 0201608
- Einar Hille, Some geometric extremal problems, J. Austral. Math. Soc. 6 (1966), 122–128. MR 0198349, DOI 10.1017/S1446788700004067 —, Methods in classical and functional analysis, Addison-Wesley, Reading, Mass., 1971.
- Roger A. Johnson, Advanced Euclidean geometry: An elementary treatise on the geometry of the triangle and the circle, Dover Publications, Inc., New York, 1960. Under the editorship of John Wesley Young. MR 0120538
- John B. Kelly, Metric inequalities and symmetric differences, Inequalities, II (Proc. Second Sympos., U.S. Air Force Acad., Colo., 1967) Academic Press, New York, 1970, pp. 193–212. MR 0264600
- John B. Kelly, Hypermetric spaces and metric transforms, Inequalities, III (Proc. Third Sympos., Univ. California, Los Angeles, Calif., 1969; dedicated to the memory of Theodore S. Motzkin), Academic Press, New York, 1972, pp. 149–158. MR 0339086
- Richard Guy, Haim Hanani, Norbert Sauer, and Johanan Schönheim (eds.), Combinatorial structures and their applications, Gordon and Breach Science Publishers, New York-London-Paris, 1970. MR 0263646 E. Kogbetliantz, Sur la sommation de séries ultrasphériques, C. R. Acad. Sci. (1917), 626-628, 778-780. —, Recherches sur la sommabilité des séries ultrasphériques par la méthode des moyennes arithmétiques, J. Math. 3 (1924), 107-187. E. Landau, Vorlesungen über Zahlentheorie. Vol. 2, Hirzel, Leipzig, 1927.
- Detlef Laugwitz, Differentialgeometrie, Mathematische Leitfäden, B. G. Teubner Verlagsgesellschaft, Stuttgart, 1960 (German). MR 0116266 E. Netto, Lehrbuch der Combinatorik, Teubner, Leipzig, 1901. F. Nielson, Om summen af afstandene mellem n punkter $pa^\circ$ en Kugleflade, Nordisk Mat. Tidskr. 13 (1965), 45-50. G. Pólya and G. Szegö, Über den transfiniten Durchmesser (Kapazitätskonstante) von ebenen und räumlichen Punktmengen, J. Reine Angew. Math 165 (1931), 4-49.
- I. J. Schoenberg, Remarks to Maurice Fréchet’s article “Sur la définition axiomatique d’une classe d’espace distanciés vectoriellement applicable sur l’espace de Hilbert” [MR1503246], Ann. of Math. (2) 36 (1935), no. 3, 724–732. MR 1503248, DOI 10.2307/1968654
- I. J. Schoenberg, On certain metric spaces arising from Euclidean spaces by a change of metric and their imbedding in Hilbert space, Ann. of Math. (2) 38 (1937), no. 4, 787–793. MR 1503370, DOI 10.2307/1968835
- I. J. Schoenberg, Metric spaces and positive definite functions, Trans. Amer. Math. Soc. 44 (1938), no. 3, 522–536. MR 1501980, DOI 10.1090/S0002-9947-1938-1501980-0
- I. J. Schoenberg, Metric spaces and completely monotone functions, Ann. of Math. (2) 39 (1938), no. 4, 811–841. MR 1503439, DOI 10.2307/1968466
- I. J. Schoenberg, Positive definite functions on spheres, Duke Math. J. 9 (1942), 96–108. MR 5922, DOI 10.1215/S0012-7094-42-00908-6
- I. Schur, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z. 1 (1918), no. 4, 377–402 (German). MR 1544303, DOI 10.1007/BF01465096
- Günter Sperling, Lösung einer elementargeometrischen Frage von Fejes Tóth, Arch. Math. 11 (1960), 69–71 (German). MR 112077, DOI 10.1007/BF01236910
- Kenneth B. Stolarsky, Sums of distances between points on a sphere, Proc. Amer. Math. Soc. 35 (1972), 547–549. MR 303418, DOI 10.1090/S0002-9939-1972-0303418-3
- Kenneth B. Stolarsky, Sums of distances between points on a sphere. II, Proc. Amer. Math. Soc. 41 (1973), 575–582. MR 333995, DOI 10.1090/S0002-9939-1973-0333995-9
- Gabor Szegö, Orthogonal polynomials, American Mathematical Society Colloquium Publications, Vol. 23, American Mathematical Society, Providence, R.I., 1959. Revised ed. MR 0106295
- E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469, DOI 10.1017/CBO9780511608759
- H. S. Witsenhausen, On the maximum of the sum of squared distances under a diameter constraint, Amer. Math. Monthly 81 (1974), 1100–1101. MR 370367, DOI 10.2307/2319046
- H. S. Witsenhausen, Metric inequalities and the zonoid problem, Proc. Amer. Math. Soc. 40 (1973), 517–520. MR 390916, DOI 10.1090/S0002-9939-1973-0390916-0
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 193 (1974), 1-31
- MSC: Primary 52A50
- DOI: https://doi.org/10.1090/S0002-9947-1974-0350629-3
- MathSciNet review: 0350629