An extension of Weyl’s lemma to infinite dimensions
HTML articles powered by AMS MathViewer
- by Constance M. Elson
- Trans. Amer. Math. Soc. 194 (1974), 301-324
- DOI: https://doi.org/10.1090/S0002-9947-1974-0343022-0
- PDF | Request permission
Abstract:
A theory of distributions analogous to Schwartz distribution theory is formulated for separable Banach spaces, using abstract Wiener space techniques. A distribution T is harmonic on an open set U if for any test function f on U, $T(\Delta f) = 0$, where $\Delta f$ fis the generalized Laplacian of f. We prove that a harmonic distribution on U can be represented as a unique measure on any subset of U which is a positive distance from ${U^C}$. In the case where the space is finite dimensional, it follows from Weyl’s lemma that the measure is in fact represented by a ${C^\infty }$ function. This functional representation cannot be expected in infinite dimensions, but it is shown that the measure has smoothness properties analogous to infinite differentiability of functions.References
- Robert Bonic and John Frampton, Differentiable functions on certain Banach spaces, Bull. Amer. Math. Soc. 71 (1965), 393–395. MR 172084, DOI 10.1090/S0002-9904-1965-11310-6
- Xavier Fernique, Intégrabilité des vecteurs gaussiens, C. R. Acad. Sci. Paris Sér. A-B 270 (1970), A1698–A1699 (French). MR 266263
- I. M. Gel′fand and G. E. Shilov, Generalized functions. Vol. 1, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1964 [1977]. Properties and operations; Translated from the Russian by Eugene Saletan. MR 0435831 V. Goodman, Regularity properties of harmonic functions on Hilbert space, Ph.D. Thesis, Cornell University, Ithaca, N. Y., 1970.
- Leonard Gross, Abstract Wiener spaces, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66) Univ. California Press, Berkeley, Calif., 1967, pp. 31–42. MR 0212152
- Leonard Gross, Potential theory on Hilbert space, J. Functional Analysis 1 (1967), 123–181. MR 0227747, DOI 10.1016/0022-1236(67)90030-4
- James A. Hoffman, There are no strict great $x$-cycles after a reducing or $P^2$ surgery on a knot, J. Knot Theory Ramifications 7 (1998), no. 5, 549–569. MR 1637581, DOI 10.1142/S0218216598000309
- G. A. Hunt, Some theorems concerning Brownian motion, Trans. Amer. Math. Soc. 81 (1956), 294–319. MR 79377, DOI 10.1090/S0002-9947-1956-0079377-3
- Serge Lang, Introduction to differentiable manifolds, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0155257
- Edward Nelson, An existence theorem for second order parabolic equations, Trans. Amer. Math. Soc. 88 (1958), 414–429. MR 95341, DOI 10.1090/S0002-9947-1958-0095341-4
- Jacques Neveu, Bases mathématiques du calcul des probabilités, Masson et Cie, Éditeurs, Paris, 1964 (French). MR 0198504
- M. Ann Piech, Differential equations on abstract Wiener space, Pacific J. Math. 43 (1972), 465–473. MR 320559, DOI 10.2140/pjm.1972.43.465
- J. H. M. Whitfield, Differentiable functions with bounded nonempty support on Banach spaces, Bull. Amer. Math. Soc. 72 (1966), 145–146. MR 184073, DOI 10.1090/S0002-9904-1966-11458-1
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 194 (1974), 301-324
- MSC: Primary 46G05; Secondary 46F10
- DOI: https://doi.org/10.1090/S0002-9947-1974-0343022-0
- MathSciNet review: 0343022