Power residues and nonresidues in arithmetic progressions
HTML articles powered by AMS MathViewer
- by Richard H. Hudson
- Trans. Amer. Math. Soc. 194 (1974), 277-289
- DOI: https://doi.org/10.1090/S0002-9947-1974-0374002-7
- PDF | Request permission
Abstract:
Let k be an integer $\geq 2$ and p a prime such that ${v_k}(p) = (k,p - 1) > 1$. Let $bn + c(n = 0,1, \ldots ;b \geq 2,1 \leq c < b,(b,p) = (c,p) = 1)$ be an arithmetic progression. We denote the smallest kth power nonresidue in the progression $bn + c$ by $g(p,k,b,c)$, the smallest quadratic residue in the progression $bn + c$ by ${r_2}(p,b,c)$, and the nth smallest prime kth power nonresidue by ${g_n}(p,k),n = 0,1,2, \ldots$. If $C(p)$ is the multiplicative group consisting of the residue classes $\bmod \;p$, then the kth powers $\bmod \;p$ form a multiplicative subgroup, ${C_k}(p)$. Among the ${v_k}(p)$ cosets of ${C_k}(p)$ denote by T the coset to which c belongs (where c is the first term in the progression $bn + c)$, and let $h(p,k,b,c)$ denote the smallest number in the progression $bn + c$ which does not belong to T so that $h(p,k,b,c)$ is a natural generalization of $g(p,k,b,c)$. We prove by purely elementary methods that $h(p,k,b,c)$ is bounded above by ${2^{7/4}}{b^{5/2}}{p^{2/5}} + 3{b^3}{p^{1/5}} + {b^2}$ if p is a prime for which either b or $p - 1$ is a kth power nonresidue. The restriction on b and $p - 1$ may be lifted if $p > {({g_1}(p,k))^{7.5}}$. We further obtain a similar bound for ${r_2}(p,b,c)$ for every prime p, without exception, and we apply our results to obtain a bound of the order of ${p^{2/5}}$ for the nth smallest prime kth power nonresidue of primes which are large relative to $\Pi _{j = 1}^{n - 1}{g_j}(p,k)$.References
- Alfred Brauer, รber den kleinsten quadratischen Nichtrest, Math. Z. 33 (1931), no.ย 1, 161โ176 (German). MR 1545207, DOI 10.1007/BF01174349
- Alfred Brauer, รber die Verteilung der Potenzreste, Math. Z. 35 (1932), no.ย 1, 39โ50 (German). MR 1545287, DOI 10.1007/BF01186547
- Alfred Brauer, On the non-existence of the Euclidean algorithm in certain quadratic number fields, Amer. J. Math. 62 (1940), 697โ716. MR 2994, DOI 10.2307/2371480
- Ezra Brown, A theorem on biquadratic reciprocity, Proc. Amer. Math. Soc. 30 (1971), 220โ222. MR 280462, DOI 10.1090/S0002-9939-1971-0280462-5
- D. A. Burgess, A note on the distribution of residues and non-residues, J. London Math. Soc. 38 (1963), 253โ256. MR 148628, DOI 10.1112/jlms/s1-38.1.253 P. Erdรถs and Chao Ko, Note on the Euclidean algorithm, J. London Math. Soc. 13 (1938), 3-8.
- Loo-Keng Hua, On the distribution of quadratic nonresidues and the Euclidean algorithm in real quadratic fields. I, Trans. Amer. Math. Soc. 56 (1944), 537โ546. MR 11481, DOI 10.1090/S0002-9947-1944-0011481-X
- Richard H. Hudson, On squences of consecutive quadratic nonresidues, J. Number Theory 3 (1971), 178โ181. MR 274385, DOI 10.1016/0022-314X(71)90034-5 โ, On the distribution of k-th power non-residues, Duke Math. J. 39 (1972), 85-88.
- Richard H. Hudson, Prime $k$-th power non-residues, Acta Arith. 23 (1973), 89โ106. MR 321849, DOI 10.4064/aa-23-1-89-106
- Richard H. Hudson, On the distribution of $k$-th power non residues in the interval $[1,\,p^{a}],\,2/5<a\leq 4/9$, J. Reine Angew. Math. 260 (1973), 178โ180. MR 316362, DOI 10.1515/crll.1973.260.178 C. Stengel, รber quadratische Nichtreste von der Form $8h + 1$, J. Reine Angew. Math. 153 (1924), 208-214.
- Clifton T. Whyburn, The second smallest quadratic non-residue, Duke Math. J. 32 (1965), 519โ528. MR 180524
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 194 (1974), 277-289
- MSC: Primary 10A15
- DOI: https://doi.org/10.1090/S0002-9947-1974-0374002-7
- MathSciNet review: 0374002