ABSTRACT. We consider a bounded domain \(\Omega \) in \(\mathbb{C}^n \) and the Banach algebra \(A(\Omega) \) of all continuous functions on \(\overline{\Omega} \) which are holomorphic on \(\Omega \). Fix \(f_1, \ldots, f_k \in A(\Omega) \). We say they are a set of generators if \(A(\Omega) \) is the smallest closed subalgebra containing the \(f_i \). We restrict attention to the case when \(\Omega \) is strictly pseudoconvex and smoothly bounded and the \(f_i \) are smooth on \(\overline{\Omega} \). In this case, Theorem 1 below gives conditions assuring that a given set \(f_i \) is a set of generators.

1. Introduction. Let \(\Omega \) be a bounded domain in \(\mathbb{C}^n \). \(A(\Omega) \) denotes the algebra of all continuous complex-valued functions on \(\overline{\Omega} \) which are holomorphic on \(\Omega \). With \(\|f\| = \max_{\Omega} |f| \), \(A(\Omega) \) is a Banach algebra.

Fix \(f_1, \ldots, f_k \in A(\Omega) \). Denote by \([f_1, \ldots, f_k]_\Omega \) the uniform closure on \(\overline{\Omega} \) of the algebra of all polynomials in \(f_1, \ldots, f_k \). We say that the \(f_i \) form a set of generators for \(A(\Omega) \) if \([f_1, \ldots, f_k]_\Omega = A(\Omega) \).

Our problem is to decide when a given set \(f_1, \ldots, f_k \) is a set of generators for \(A(\Omega) \).

Two immediate necessary conditions are:

1. The \(f_i \) separate points on \(\overline{\Omega} \).
2. The matrix \(\left(\frac{\partial f_i}{\partial z_j} \right) \), \(1 \leq i \leq k, 1 \leq j \leq n \), has rank \(n \) at each point \(z \in \Omega \).

Note that (1) implies that \(k \geq n \).

To be able to find sufficient conditions, we impose the following restrictions on \(\Omega \): \(\exists \) a function \(\rho \) of class \(C^4 \) and strictly plurisubharmonic in some neighborhood of \(\overline{\Omega} \) such that \(\Omega = \{z \mid \rho(z) < 0\} \), and \(\text{grad } \rho \neq 0 \) on \(\partial \Omega \).

In this case it is known (see Appendix (A.1)) that the spectrum of the Banach algebra \(A(\Omega) \) coincides with \(\overline{\Omega} \).

Fix \(f_1, \ldots, f_k \in A(\Omega) \). Put \(K = \{(f_1(z), \ldots, f_k(z)) \mid z \in \overline{\Omega}\} \). In order that the \(f_i \) be a set of generators it is now necessary that

3. \(K \) is polynomially convex in \(\mathbb{C}^k \).

We shall also assume that the \(f_i \) are smooth up to the boundary of \(\Omega \). For each multi-index \(I = (i_1, \ldots, i_n) \), put

\[
|I| = \sum_{r=1}^{n} i_r \quad \text{and} \quad D^I = \frac{\partial|I|}{\partial z_1^{i_1} \cdots \partial z_n^{i_n}}.
\]

Presented to the Society, June 25, 1973 under the title Generators for some uniform algebras; received by the editors May 23, 1973.

Key words and phrases. Domain in \(\mathbb{C}^n \), generators, Banach algebra, polynomial convexity.

Copyright © 1974, American Mathematical Society
Definition 1. Fix an integer $\sigma > 0$. $A^\sigma (\Omega)$ denotes the class of all functions f on Ω such that, for each multi-index I with $0 \leq |I| \leq \sigma$, $D^I f \in A(\Omega)$.

With the norm

$$
\|f\| = \sum_I \frac{1}{|I|!} \max_{\Omega} |D^I f|,
$$

where the sum is taken over all I with $0 \leq |I| \leq \sigma$ and $I! = i_1! \cdot i_2! \cdots i_n!$ if $I = (i_1, \ldots, i_n)$, $A^\sigma (\Omega)$ is a Banach algebra.

For $f \in A^\sigma (\Omega)$, $(\partial f / \partial z_i)(z)$ is defined for each $z \in \partial \Omega$ by

$$
\frac{\partial f}{\partial z_i}(z) = \lim_{\zeta \to z} \frac{\partial f(\zeta)}{\partial z_i},
$$

where $\zeta \to z$ from inside Ω, the limit existing by definition of $A^\sigma (\Omega)$. We can hence consider the matrix $((\partial f / \partial z_i))$ at all points of $\partial \Omega$.

Observation 1. Fix $\sigma > 0$. For $f_1, \ldots, f_k \in A^\sigma (\Omega)$ conditions (1), (2), (3) fail to be sufficient even when $n = 1$ and Ω is the unit disk: $|z| < 1$. We give an example in the Appendix (A.3).

We therefore strengthen condition (2) to

(2') The matrix $((\partial f / \partial z_i))$ has rank n for all $z \in \partial \Omega$.

Theorem 1. Fix $\sigma \geq 4$. Let Ω be as above. Fix $f_1, \ldots, f_k \in A^\sigma (\Omega)$ such that (1), (2'), (3) are satisfied. Then f_1, \ldots, f_k are a set of generators for $A(\Omega)$.

Note. Our hypotheses on Ω are satisfied by all smoothly bounded strictly convex sets in \mathbb{C}^n, in particular by balls.

Theorem 1 admits the following generalisation:

Theorem 1 bis. Let Ω be as in Theorem 1. Let \mathfrak{A} be a closed subalgebra of $A(\Omega)$ which contains a family \mathfrak{F} of functions such that:

(i) $\mathfrak{F} \subset A^\sigma (\Omega)$.

(ii) \mathfrak{F} separates points on Ω.

(iii) For each $z \in \partial \Omega$, \exists a finite subset $f_1(\zeta), \ldots, f_k(\zeta)$ of \mathfrak{F} such that $((\partial f_j(\zeta) / \partial z_i))$ has rank n at z.

(iv) The spectrum of \mathfrak{A} is $\partial \Omega$.

Then $\mathfrak{A} = A(\Omega)$.

2. Modules over a Banach algebra. A is a commutative semisimple Banach algebra with unit 1. Its spectrum is denoted $\sigma(A)$. Fix k.

A^k denotes the A-module of all k-tuples (a_1, \ldots, a_k) of elements $a_i \in A$.

Definition 2.1. Fix $l < k$, and fix elements $\xi^1, \ldots, \xi^l \in A^k$. We say the set ξ^1, \ldots, ξ^l admits a completion if $\exists \xi^{l+1}, \ldots, \xi^{k} \in A^k$ such that $\xi^1, \xi^2, \ldots, \xi^l, \xi^{l+1}, \ldots, \xi^{k}$ is a module basis for A^k.

If $\xi = (\xi_1, \ldots, \xi_k) \in A^k$ and $M \in \Omega(k)$, we set $\xi(M) = (\xi_1(M), \ldots, \xi_k(M)) \in \mathbb{C}^k$, where, for $a \in A, a(M)$ denotes the value at M of the Gel'fand transform.
of \(a \). It is clear that, given \(\xi^1, \ldots, \xi^l \in A^k \), a necessary condition in order that this set admits a completion is

(5) \(\xi^1(M), \ldots, \xi^l(M) \) are linearly independent in \(C^k \).

We ask: Under what restrictions is (5) a sufficient condition in order that \(\xi^1, \ldots, \xi^l \) admits a completion?

Our work is based on results of Forster [1], regarding finitely generated projective modules over a Banach algebra \(A \).

Definition 2.2. An \(A \)-module \(Q \) is a \(p \)-module (finitely generated projective module) if \(\exists n \) and a direct sum decomposition \(A^n = P \oplus Q \), where \(P \) is another module.

\(Q \) is free if it has a basis.

Definition 2.3. Let \(P \) be a \(p \)-module. \(P \) has rank \(k \) if for every \(M \in \mathfrak{M} \), the vector space \(P/MP \) has dimension \(k \) over the field \(A/M \cong C \).

Lemma 2.1. Assume \(\mathfrak{M} \) is connected. Then every \(p \)-module \(P \) over \(A \) has some rank \(k \).

Proof. \(\exists n \) and a decomposition

(6) \(A^n = P \oplus Q \).

Fix \(M \in \mathfrak{M} \). We claim:

\(P/MP \) is isomorphic to the vector space \(V_M = \{ \xi(M) \mid \xi \in P \} \).

For let \(\xi_1, \xi_2 \) be elements of \(P \) congruent mod \(MP \). Then

\[
\xi_1 - \xi_2 = \sum_{i=1}^{l} m_i p_i, \quad m_i \in M, p_i \in P.
\]

Hence \(\xi_1(M) = \xi_2(M) \). So the map \([\xi] \rightarrow \xi(M) \) is well defined from the elements of \(P/MP \) to \(V_M \). It is evidently linear and surjective. Suppose, for some \(\xi \in P \), \([\xi] \rightarrow 0 \), i.e., \(\xi(M) = 0 \). Let \(E_1, \ldots, E_n \) be the standard basis for \(A^n \). \(E_i = p_i + q_i, p_i \in P, q_i \in Q \), for each \(i \). We have

\[
\xi = (\xi_1, \ldots, \xi_n) = \sum_{i=1}^{n} \xi_i E_i.
\]

For each \(i \), \(\xi_i(M) = 0 \), so \(\xi_i \in M \).

\[
\xi = \sum_{i=1}^{n} \xi_i(p_i + q_i) = \sum \xi_i p_i + \sum \xi_i q_i.
\]

Since (6) is a direct sum decomposition, \(\xi = \sum \xi_i p_i \in MP \), so \([\xi] = 0 \).

Thus the map is injective, and the claim is proved. Put \(W_M = \{ \xi(M) \mid \xi \in Q \} \).

By (6), we have

(7) \(C^n = V_M \oplus W_M \).

That (7) is a direct sum decomposition is seen by the preceding argument. Thus \(n = \dim V_M + \dim W_M \). Fix \(M_0 \in \mathfrak{M} \) and put \(l = \dim V_{M_0} \). Thus \(\exists \) elements
\(\xi^1, \ldots, \xi^l \in P \) with \(\xi^i(M_0) \), \(\ldots, \xi^i(M) \) linearly independent. Hence for some choice of indices \(i_1, i_2, \ldots, i_l \), the determinant

\[
D(M) = \begin{vmatrix}
\xi^1_i(M) & \cdots & \xi^l_i(M) \\
\vdots & & \vdots \\
\xi^1_i(M) & \cdots & \xi^l_i(M)
\end{vmatrix} \neq 0
\]

when \(M = M_0 \). By continuity, \(D(M) \neq 0 \) for all \(M \) in some neighborhood of \(M_0 \) in \(M \). Hence \(\dim V_M \geq l \) for all \(M \) in some neighborhood of \(M_0 \). Similarly, \(\dim W_M \geq \dim W_{M_0} = n - l \) for all \(M \) in some neighborhood. But \(\dim V_M + \dim W_M = n \) for all \(M \). Hence \(\dim V_M = l \) for all \(M \) in some neighborhood of \(M_0 \).

Thus \(\dim V_M \) is locally constant on \(M \). Since \(M \) is connected, \(\exists k \) with \(\dim V_M = k \) for all \(M \in M \). Since \(P/MP \) is isomorphic to \(V_M \), we have \(\dim P/MP = k \) for all \(M \in M \). Q.E.D.

Definition 2.4. Let \(P \) be a \(\mathcal{P} \)-module \(\subseteq A^n \). By \(P \otimes C(\mathcal{R}) \), we denote the collection of all finite sums \(\sum_{i=1}^{l} f_i p_i, f_i \in C(\mathcal{R}), p_i \in P \), regarded as elements of \((C(\mathcal{R}))^n \).

Note that \(A^n \otimes C(\mathcal{R}) \cong (C(\mathcal{R}))^n \).

We shall use the following two results from [1]:

Proposition F.1. Let \(Q \) be a \(\mathcal{P} \)-module. If \(Q \otimes C(\mathcal{R}) \) is free as a \(C(\mathcal{R}) \)-module, then \(Q \) is free as an \(A \)-module.

Proof. Satz 6 of [1].

Proposition F.2. Let the Banach algebra \(A \) have \(\mathcal{P} \) topological generators. Let \(P_1, P_2 \) be two \(\mathcal{P} \)-modules of rank \(k \) such that, for some \(l \),

\[
P_1 \oplus A^l \cong P_2 \oplus A^l.
\]

If \(k \geq [\rho/2] \), then \(P_1 \cong P_2 \).

Proof. Satz 10 of [1].

Lemma 2.2. \(A \) is a Banach algebra such that \(\mathcal{R} \) is a connected subset of \(C^n \). \(Q \) is a \(\mathcal{P} \)-module over \(A \) such that

\[
(\star) \quad A^k = P \oplus Q, \quad \text{where } P \cong A^l
\]

for some \(k, l \). If \(k - l \geq n \), then \(Q \) is free.

Proof. Tensoring (\(\star \)) with \(C = C(\mathcal{R}) \) gives

\[
C^k = C^l \oplus \{ Q \otimes C \}.
\]

The rank of \(Q \otimes C \) (as \(C \)-module) is \(k - l \). \(C(\mathcal{R}) \) possesses \(2n \) topological generators, since \(\mathcal{R} \subset C^n \). \(k - l \geq n = [2n/2] \). Also
GENERATORS FOR $A(\omega)$

$$C^I \oplus C^{k-I} = C^I \oplus \{Q \otimes C\}.$$

By Proposition F.2, it follows that

$$C^{k-I} \cong Q \otimes C.$$

Thus $Q \otimes C$ is free as C-module. By Proposition F.1, this implies that Q is free as A-module. Q.E.D.

Theorem 2.1. Let A be a Banach algebra with spectrum \mathbb{R} such that \mathbb{R} is a connected subset of C^n. Fix k, l satisfying

$$(8) \quad k \geq 2n, \quad l \leq n.$$

Fix $\xi^1, \ldots, \xi^l \in A^k$ satisfying (5). Then this set admits a completion.

Proof. We hold n fixed and proceed by induction on l.

Let $l = 1$; we are given $\xi^1 \in A^k, \xi^1(M) \neq 0$ for all $M \in \mathbb{R}$. $\xi^1 = (\xi^1, \ldots, \xi^1)$. Since the ξ^1 have no common zero on \mathbb{R}, $\exists a \in A$ with $\sum_{j=1}^l a_j \xi^1 = 1$.

Define a map $\varphi: A^k \to A$ by

$$\varphi(x_1, \ldots, x_k) = \sum_{j=1}^k a_j x_j.$$

Then φ is a homomorphism and $\varphi(\xi^1) = 1$. If $\xi \in A^k, \xi - \varphi(\xi) \cdot \xi^1 \in \ker \varphi$, so

$$\xi = \varphi(\xi) \cdot \xi^1 + r, \quad r \in \ker \varphi.$$

If $\xi = t \cdot \xi^1 + r, \quad t \in A, \quad r' \in \ker \varphi$, then $t = \varphi(t) = r$. Thus we have the direct sum decomposition $A^k = \{\xi^1\} \oplus \ker \varphi$ where $\{\xi^1\}$ is the cyclic module generated by ξ^1. $\{\xi^1\}$ is isomorphic to A^k, since $a\xi^1 = 0$ only if $a = 0$, in view of the fact that $\xi^1(M) \neq 0$ for all M. Lemma 2.2 applies since, by (8), $k - 1 \geq n$, and so $\ker \varphi$ is free.

Thus $\ker \varphi$ has a basis ξ^2, \ldots, ξ^k and so the set $\xi^1, 1 \leq i \leq k$, is the required completion of ξ^1.

Now, assume the theorem is true when l is replaced by $l - 1$ and consider a set ξ^1, \ldots, ξ^l satisfying (5) and $l \leq n$. Then ξ^1, \ldots, ξ^{l-1} satisfies (5). By the induction hypothesis, $\exists \eta^1, \eta^{l+1}, \ldots, \eta^k \in A^k$ such that $\xi^1, \ldots, \xi^{l-1}, \eta^1, \ldots, \eta^k$ forms a basis of A^k. Denote by Q the module generated by η^1, \ldots, η^k. We have the direct sum decomposition

$$(9) \quad A^k = \{\xi^1\} \oplus \cdots \oplus \{\xi^{l-1}\} \oplus Q.$$

In particular, $\exists c_r \in A, \quad q \in Q$ with

$$(10) \quad \xi^l = \sum_{r=1}^{l-1} c_r \xi^r + q.$$

For each M with $q(M) = 0$, we have

$$\xi^l(M) = \sum_{r=1}^{l-1} c_r(M) \xi^r(M),$$
contrary to (5). Hence $q(M) \neq 0$, for all M. Also $Q \cong A^{k-l+1}$. We can hence apply to Q and q the reasoning used above on A^k and ξ^1 and obtain a homomorphism $\varphi': Q \to A$, with $Q = \{q\} \oplus \ker \varphi'$. The rank of $Q = k - l + 1$, so the rank of $\ker \varphi' = k - l$. But, by (8), $k - l \geq n$. So, by Lemma 2.2, $\ker \varphi'$ is free, and has rank $k - l$. Let ξ^1, \ldots, ξ^k be a basis for $\ker \varphi'$.

We claim that $\{\xi^i | 1 \leq i \leq k\}$ is a basis for A^k. This follows directly from (9) and (10). The induction is complete, so the theorem is proved.

The application of Theorem 2.1 which we will require is the following.

Theorem 2.2. Let Ω be a domain in C^n as in Theorem 1. Fix $\alpha > 0$. Let $(\xi^1, \ldots, \xi^n), \ldots, (\xi^1, \ldots, \xi^n)$ be n k-tuples of elements of $A^n(\Omega)$, where $k \geq 2n$. Assume that the matrix

$$
\begin{pmatrix}
\xi^1 & \cdots & \xi^1 \\
\vdots & \ddots & \vdots \\
\xi^n & \cdots & \xi^n
\end{pmatrix}
$$

has rank n at each point of Ω. Then $\exists k - n$ k-tuples of elements of $A^n(\Omega)$, $(a_1, \ldots, a_k), \ldots, (a_1^{k-n}, \ldots, a_k^{k-n})$ such that the determinant

$$
\begin{vmatrix}
\xi^1 & \cdots & \xi^1 \\
\vdots & \ddots & \vdots \\
\xi^n & \cdots & \xi^n \\
a_1 & \cdots & a_k \\
\vdots & \cdots & \vdots \\
a_1^{k-n} & \cdots & a_k^{k-n}
\end{vmatrix}
$$

equals 1. We are done.

Proof. The spectrum of A^α coincides with $\overline{\Omega}$. (See Appendix (A.2).) Thus the spectrum is a connected subset of C^n. The assumption on the matrix $((\xi^i))$ tells us that the vectors $\xi^i(M) = (\xi^i_1(M), \ldots, \xi^i_n(M)), i = 1, \ldots, n$, are independent at each M in the spectrum, i.e., satisfy (5).

Theorem 2.1 thus applies, and yields $\xi^{n+1}, \ldots, \xi^k \in (A^n(\Omega))^k$ which together with ξ^1, \ldots, ξ^n form a basis of $(A^n(\Omega))^k$. Elementary algebra now gives that the determinant

$$
\begin{vmatrix}
\xi^1 \\
\vdots \\
\xi^k
\end{vmatrix}
$$

is a unit in the ring $A^n(\Omega)$. Without loss of generality that determinant then equals 1. We are done.

3. **Proof of Theorems 1 and 1 bis.** Let now Ω and f_1, \ldots, f_k satisfy the hypothesis of Theorem 1. If $k < 2n$, define $f_{k+1} = \cdots = f_{2n} = f_k$. Then the set
f_1, \ldots, f_{2n} again satisfies (1), (2'), (3). Also

$$[f_1, \ldots, f_k | \Omega] = [f_1, \ldots, f_{2n} | \Omega].$$

If we can show that $[f_1, \ldots, f_{2n} | \Omega] = A(\Omega)$, then of course $[f_1, \ldots, f_k | \Omega] = A(\Omega)$. Thus it is no loss of generality to suppose $k \geq 2n$, and we do so from now on.

For $i = 1, \ldots, n$, put $p_i = (\partial f_i/\partial z_1, \ldots, \partial f_k/\partial z_i)$. Each $\partial f_i/\partial z_i \in A^{e-1}(\Omega)$. Put $A = A^{e-1}(\Omega)$. Then $p_i \in A^k$ for $i = 1, 2, \ldots, n$. Hypothesis (2') gives exactly that, for each $M \in \Omega$, the vectors $p_1(M), \ldots, p_n(M)$ are independent in C^k.

By Theorem 2.2, we can select vectors such that the determinant

$$\begin{vmatrix}
\partial f_1/\partial z_1 & \cdots & \partial f_k/\partial z_1 \\
\vdots & \ddots & \vdots \\
\partial f_1/\partial z_n & \cdots & \partial f_k/\partial z_n \\
\partial f_1/\partial z_{k-n} & \cdots & \partial f_k/\partial z_{k-n}
\end{vmatrix} = 1$$

identically on Ω. Each $a_j' \in A = A^{e-1}(\Omega)$. We choose an open neighborhood U of Ω in C^* such that each of the functions f_i, $1 \leq i \leq k$, admits an extension to U lying in $C^e(U)$ and each a_j' admits an extension to an element of $C^{e-1}(U)$.

We form the product domain in C^k: $U \times C^{k-n} = \{(z, w) \mid z \in U, w \in C^{k-n}\}$. We define a map χ of $U \times C^{k-n}$ into C^k as follows: If $(z, w) \in U \times C^{k-n},$

$$\chi(z, w) = \left(f_1(z) + \sum_{j=1}^{k-n} a_j(z)w_j, \ldots, f_k(z) + \sum_{j=1}^{k-n} a_k(z)w_j \right).$$

Note that χ is of class $\sigma - 1$ in $U \times C^{k-n}$.

Lemma 3.1. An open set V in C^k containing $\Omega \times \{0\} = \{(z, 0) \in C^k \mid z \in \Omega\}$, such that χ is a diffeomorphism of class $\sigma - 1$ on V.

Proof of Lemma 3.1. Denote by D_{χ} the Jacobian determinant of χ when we regard χ as a map from a domain in R^{2k} into R^{2k}. We have, for $z \in \Omega$,

$$D_{\chi}(z, 0) = \begin{vmatrix}
\partial f_1/\partial z_1 & \cdots & \partial f_k/\partial z_1 \\
\vdots & \ddots & \vdots \\
\partial f_1/\partial z_n & \cdots & \partial f_k/\partial z_n \\
a_1 & \cdots & a_k \\
a_1^2 & \cdots & a_k^2 \\
a_1^{k-n} & \cdots & a_k^{k-n}
\end{vmatrix}$$

in modulus squared, hence $=1$ by choice of the a_j'. By continuity this relation remains true for $z \in \Omega$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Since $D\chi(z) \neq 0$ for each $z \in \Omega \times \{0\}$, χ is a local homeomorphism in C^k at each such point. Also χ is one-to-one on $\Omega \times \{0\}$ by (1). It follows that \exists an open set V in C^k with $\Omega \times \{0\} \subset V$ such that χ is one-to-one in V and with $D\chi \neq 0$ at each point of V. Hence χ is a diffeomorphism on V, and we are done.

Notations. Let F be a holomorphic map from an open set in C^N into C^N, $F = (F_1, \ldots, F_N)$. We denote by J_F the Jacobian matrix

$$
\begin{bmatrix}
\frac{\partial F_1}{\partial \zeta_1} & \cdots & \frac{\partial F_1}{\partial \zeta_N} \\
\vdots & \ddots & \vdots \\
\frac{\partial F_N}{\partial \zeta_1} & \cdots & \frac{\partial F_N}{\partial \zeta_N}
\end{bmatrix}
$$

Let ρ be the defining function of Ω. For each $t > 0$, put $\varphi_t(z, w) = \rho(z) + t|w|^2$. For large t, the set $\{(z, w) \mid \varphi_t(z, w) \leq 0\} \subset V$, where V is as in Lemma 3.1. Fix such a t, put $\varphi = \varphi_t$, and put

$$
\mathcal{E} = \{(z, w) \in U \times C^{k-n} \mid \varphi(z, w) < 0\}.
$$

Thus $\mathcal{E} \subset V$. Also χ is holomorphic in \mathcal{E}. Put $\varphi^* = \varphi \circ \chi^{-1}$.

φ^* is a smooth function defined in $\chi(V)$.

Lemma 3.2. φ^* is strictly plurisubharmonic in a neighborhood of $\chi(\mathcal{E})$.

Proof. Fix $p = (z, w) \in \mathcal{E}$. The entries of the matrix $J_\chi(p)$ involve the numbers $\left(\frac{\partial f_i}{\partial z_j}(z)\right)$ and $\alpha_\beta(z)$, which are bounded independently of p, since if $p \in \mathcal{E}$ then $z \in \Omega$ and the f and $\alpha_\beta \in A^{\infty}(\Omega)$. Also $|w|$ is bounded for $(z, w) \in \mathcal{E}$. Thus \exists constant M such that $|J_\chi(p)\eta| \leq M|\eta|$ for all $\eta \in C^k$ and all $p \in \mathcal{E}$. Also $(J_\chi(p))^{-1} = J_{\chi^{-1}}(\chi(p))$, whence, for all $\xi \in C^k$,

$$
|\xi| = |J_\chi(p)(J_{\chi^{-1}}(\chi(p))\xi)| \leq M|J_{\chi^{-1}}(\chi(p))\xi|
$$

and so

$$
|J_{\chi^{-1}}(\chi(p))\xi| \geq \frac{|\xi|}{M}.
$$

Thus, for all $p^* \in \chi(\mathcal{E})$ and all $\xi \in C^k$, we have

$$
|J_{\chi^{-1}}(p^*)\xi| \geq \frac{|\xi|}{M}.
$$

Also, since φ is strictly plurisubharmonic on a neighborhood of \mathcal{E}, \exists constant $c > 0$ with

$$
\sum_j \frac{\partial^2 \varphi}{\partial z_i \partial \bar{z}_j}(p)\eta_i\bar{\eta}_j \geq c|\eta|^2
$$

for all $p \in \mathcal{E}$, $\eta \in C^k$.

Denote $\chi^{-1} = (\psi_1, \ldots, \psi_k)$. Each ψ_j is a smooth function on $\chi(V)$ and is holomorphic on $\chi(\mathcal{E})$. Fix $\xi = (\xi_1, \ldots, \xi_k) \in C^k$ and fix $p \in \mathcal{E}$. Put $p^* = \chi(p)$,
\[\eta = J_{\mathcal{A}^{-1}}(p^*)\xi. \] Thus, for each \(j \),

\[\eta_j = \sum_a \frac{\partial \psi_j}{\partial \xi_a}(p^*)\xi_a. \]

Direct calculation gives

\[\sum_{a,\beta} \frac{\partial^2 \psi^*}{\partial \xi_a \partial \xi_\beta}(p^*)\xi_a \xi_\beta = \sum_{i,j} \frac{\partial^2 \psi}{\partial z_j \partial \bar{z}_j}(p)\eta_i \eta_j. \]

By (12), the right-hand side

\[\geq c|\eta|^2 = c|J_{\mathcal{A}^{-1}}(p^*)\xi|^2 \]

\[\geq c \cdot \frac{|\xi|^2}{M^2}, \quad \text{by (11)}. \]

This inequality holds for all \(p \in \mathbb{C} \), hence by continuity for all \(p \in \overline{\mathbb{C}} \). The assertion of Lemma 3.2 follows.

Proof of Theorem 1. Note first that

\[\chi(\mathbb{C}) = \{ \zeta \in \chi(V) | \psi^*(\zeta) < 0 \}. \]

It is easy to see that \(\text{grad} \ \psi^* \neq 0 \) on the boundary of \(\chi(\mathbb{C}) \). Hence the domain \(\chi(\mathbb{C}) \) satisfies the hypothesis of the approximation theorem of Henkin [3], and hence if \(F \) is any function continuous in \(\chi(\mathbb{C}) \), holomorphic in \(\chi(\mathbb{C}) \), then \(\exists \) a sequence \(\{F_n\} \) of functions with the following properties:

- For each \(n \), \(F_n \) is holomorphic in some neighborhood \(W_n \) of \(\chi(\mathbb{C}) \), and \(F_n \to F \) uniformly on \(\chi(\mathbb{C}) \).

Fix \(f \in A(\Omega) \). Let \((z, w) \in \mathbb{C} \). Then \(z \in \Omega \). For \((z, w) \in \mathbb{C} \), put \(\tilde{f}(z, w) = f(z) \). \(\tilde{f} \) is then continuous in \(\mathbb{C} \), holomorphic in \(\mathbb{C} \).

\(\tilde{f}(\chi^{-1}) \) is hence continuous in \(\chi(\mathbb{C}) \), holomorphic in \(\chi(\mathbb{C}) \). By the preceding, we can choose neighborhoods \(W_n \) of \(\chi(\mathbb{C}) \) and \(F_n \) holomorphic in \(W_n \) with \(F_n \to \tilde{f}(\chi^{-1}) \) uniformly on \(\chi(\mathbb{C}) \). Put

\[K = \{ x(z, 0) | z \in \overline{\Omega} \}. \]

Then \(K \subset \overline{\chi(\mathbb{C})} \). By (3), \(K \) is polynomially convex. The Oka-Weil theorem allows us to approximate \(F_n \) uniformly by polynomials on \(K \), and so we obtain a sequence of polynomials \(\mathcal{P}_n \) in the coordinates with \(\mathcal{P}_n \to \tilde{f}(\chi^{-1}) \) uniformly on \(K \). Hence \(\mathcal{P}_n(x(z, 0)) \to f(z) \) uniformly on \(\overline{\Omega} \). But \(\chi(z, 0) = (f_1(z), \ldots, f_k(z)) \). So \(f \in [f_1, \ldots, f_k] \). Q.E.D.

Proof of Theorem 1 bis. Condition (iii) gives that each \(z \in \overline{\Omega} \) has a neighborhood \(U_z \) such that \(\exists \) a finite subset of \(\mathbb{C} \) separating points in \(U_z \). This, plus the compactness of \(\overline{\Omega} \), implies that \(\exists \) a finite set of elements \(f_1, \ldots, f_t \in \mathbb{C} \) such that each point of \(\overline{\Omega} \) has a neighborhood where \(f_1, \ldots, f_t \) separate points. Using this fact and (ii), a standard argument shows \(\exists \) a finite set \(f_{t+1}, \ldots, f_k \in \mathbb{C} \) which
together separate points on \(\overline{\Omega} \). The set \(\{ f_i \mid 1 \leq i \leq k \} \) then satisfies our conditions (1) and (2'). Using the functions \(f_1, \ldots, f_k \) we proceed as in the proof of Theorem 1 to obtain a map \(\chi \) and a set \(\mathcal{E} \) as earlier. The situation differs from the preceding one in that

\[
K = \{ \chi(z, 0) \mid z \in \overline{\Omega} \} = \{ (f_1(z), \ldots, f_k(z)) \mid z \in \overline{\Omega} \}
\]

is not necessarily polynomially convex. However, we can do the following: Fix \(f \in A(\Omega) \). Define \(\tilde{f}(z, w) = f(z) \), as earlier, for \((z, w) \in \mathcal{E} \). By the proof of Theorem 1, \(\exists f_n \) holomorphic in a neighborhood of \(K \) with

\[
f_n \to \tilde{f}(\chi^{-1})
\]

uniformly on \(K \). Since the spectrum of \(\mathfrak{A} \) coincides with \(\overline{\Omega} \) by (iv), the operational calculus applied to \(\mathfrak{A} \) yields that, if \(g_n = F_n(f_1, \ldots, f_k) \), \(g_n \) lies in \(\mathfrak{A} \), for each \(n \). By (13), \(g_n(z) \to f(z) \) uniformly on \(\overline{\Omega} \). Hence \(f \in \mathfrak{A} \). Q.E.D.

Appendix. (A.1) Let \(\Omega \) be a domain in \(\mathbb{C}^n \), \(\Omega = \{ z \mid p(z) < 0 \} \), where \(p \) is strictly plurisubharmonic in a neighborhood of \(\overline{\Omega} \) and \(\text{grad } p \neq 0 \) on \(\partial \Omega \). Then the spectrum of \(A(\Omega) \) is \(\overline{\Omega} \).

Fix \(\varepsilon > 0 \) and put \(\Omega_{\varepsilon} = \{ z \mid p(z) < \varepsilon \} \). For small \(\varepsilon \), we have that \(\Omega_{\varepsilon} \) is a Stein manifold and \(\overline{\Omega} \) is convex with respect to the algebra \(H(\Omega_{\varepsilon}) \) of all functions holomorphic in \(\Omega_{\varepsilon} \). Let \(B \) denote the uniform closure on \(\overline{\Omega} \) of the restrictions to \(\overline{\Omega} \) of functions in \(H(\Omega_{\varepsilon}) \). Since \(\overline{\Omega} \) is convex with respect to \(H(\Omega_{\varepsilon}) \), \(B \) contains the restriction to \(\overline{\Omega} \) of each function \(F \) holomorphic in some neighborhood of \(\overline{\Omega} \). Hence, by the approximation theorem in [3], \(B = A(\Omega) \). On the other hand, by Theorem 7.2.10 of [4], the spectrum of \(B \) coincides with \(\overline{\Omega} \). We are done.

(A.2) Let \(\Omega \) be as in (A.1) and fix \(\sigma \). The spectrum of \(A^\sigma(\Omega) \) coincides with \(\overline{\Omega} \).

For fix a homomorphism \(m: A^\sigma(\Omega) \to \mathbb{C} \). Let \(f \in A^\sigma(\Omega) \).

Put \(\lambda = m(f) \). If \(|\lambda| > \max_{z} |f| \), \(f - \lambda \) is invertible in \(A^\sigma(\Omega) \), contradicting that \(m(f - \lambda) = 0 \). Hence \(|\lambda| \leq \max_{z} |f| \). It follows that \(m \) extends to an element of the spectrum of the closure of \(A^\sigma(\Omega) \) in \(A(\Omega) \). But that closure is \(A(\Omega) \), by the approximation theorem in [3]. Hence, by (A.1), \(m \) coincides with a point of \(\overline{\Omega} \), and we are done.

(A.3) Consider the open disk \(E: |z| < 1 \) in the plane. Put

\[
\varphi(z) = \exp(-(1 + z)/(1 - z)).
\]

Put \(f = (z - 1)^3 \cdot \varphi \), \(g = (z - 1)^4 \cdot \varphi \).

Assertion. \(f, g \in A^1(E) \) and satisfy (1), (2), (3) on \(E \). Yet \(f, g \) fail to generate \(A(E) \).

The fact that \(f, g \in A^1(E) \) as well as conditions (1) and (2) are checked by direct calculation. The argument to prove (3) is longer, and we do not give it here.

The fact that \([f, g \mid E] \neq A(E) \) is seen as follows: Fix \(h \in [f, g \mid E] \) with \(h(1) = 0 \). Choose a sequence \(g_n \to h \) uniformly on \(E \) with each \(g_n \) a polynomial...
GENERATORS FOR $A(\Omega)$

in f and g. We may assume $g_n(1) = 0$, all n.

$$g_n = \sum_{\alpha, \beta \geq 0} c_{\alpha, \beta}^{(n)} \cdot g^\alpha \cdot f^\beta, \quad c_{\alpha, \beta}^{(n)} = g_n(1) = 0.$$

Hence $g_n = h_n \cdot \varphi$, where $h_n \in A(E)$. Since $|\varphi| = 1$ on ∂E, $g_n \varphi = h_n$, so $h_n \to h \varphi$ in the uniform norm on $|z| = 1$. Hence $h \varphi \in A(E)$ or $h = H \cdot \varphi$, $H \in A(E)$. Hence, every $h \in [f, g | E]$ with $h(1) = 0$ has φ as a factor, and so $[f, g | E] \neq A(E)$, as claimed.

Acknowledgment. We want to thank Douady for an enlightening conversation.

Note 1. Recall that condition (3) required the set $K = \{(f_1(z), \ldots, f_k(z)) \mid z \in \Omega\}$ to be polynomially convex.

When Ω is the unit disk in \mathbb{C}, condition (3) is superfluous, i.e., is implied by (1) and (2') assuming the $f_j \in A'(\Omega)$. This was proved by J.-E. Björk in [11]. For the case when the f_j are holomorphic on the closed disk, it was proved by Wermer in [8].

For the case when Ω is the disk in the plane, our Theorem 1 is known and is due to R. Blumenthal (to appear). This proof uses the measures orthogonal to the algebra. He needs only one derivative for the f_j.

In the case when Ω is the ball in \mathbb{C}^2, condition (3) is no longer a consequence of (1) and (2'). The example in Wermer [9] shows this.

Questions related to the work of the present paper are studied by Gamelin [2, Theorem 7], and by Sakai in [6] and [7].

Note 2. Every smoothly bounded strictly pseudoconvex domain Ω in \mathbb{C}^n satisfies our condition; i.e., one can find a function ρ smooth and strictly plurisubharmonic in a neighborhood of Ω such that $\Omega = \{z \mid \rho(z) < 0\}$ and $\text{grad } \rho \neq 0$ on $\partial \Omega$.

Added in proof. We have recently noted the paper by V. Iu. Lin, Holomorphic fiber bundles and multi-valued functions of an element of a Banach algebra, Functional Anal. Appl. 7 (1973), 43–51 (Russian). This paper overlaps with §2 of this article.

REFERENCES

Faculté des Sciences, Mathématique, Orsay, France

Department of Mathematics, Brown University, Providence, Rhode Island 02912