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ON THE FUNCTIONAL EQUATION f2 = e2*1 + e2*2 + e2*3

AND A NEW PICARD THEOREM

BY

MARK GREEN

ABSTRACT.  By analogy with E. Borel's reduction of the classical Picard

theorem to an analytic statement about linear relations among exponentials of

entire functions, a new Picard theorem is proved by considering the functional
2        2^>i        2<p2        2</>a

relation  /   = e        + e        + e for entire functions.   The analytic techniques

used are those of Nevanlinna theory.

Introduction.   An important factor in evoking new interest in value distribution

theory has been the re-interpretation of many of its unsolved questions in differ-

ential geometric and algebro-geometric language, through the work of Ahlfors,

Chern, Griffiths, Kobayashi, Stoll, and Wu.   An especially appealing question of

this type is whether a holomorphic mapping /: C —* P — D to complex projective

space omirting a hypersurface D with normal crossings and of degree > n + 2

must be algebraically degenerate, in other words whether the image of / must lie

in an algebraic hypersurface.  For « = 1, this is just the classical Picard theo-

rem.  A few special cases are known for higher n, notably if D is a collection of

hyperplanes (Borel [2], Cartan [3], Ahlfors [1]; see Green [4] for the case of hyper-

planes not in general position) or if D is a Fermât hypersurface \ZÍ + Z¡ + ...

+ Zdn = 0 ! of high degree (N. Toda [8], Green [5]).  The methods employed all

have a common feature — the hypothesis is rephrased as a functional equation

which is then differentiated several times, and the resulting system of equations

is solved.   This yields expressions for the coordinate functions of the map in

terms of their derivatives, from which a contradiction is obtained by using Nevan-

linna theory to show these expressions for the coordinate functions grow too

slowly.   This contradiction implies that the system of equations is redundant,

which is equivalent to the vanishing of a certain Wronskian, forcing a linear re-

lation among the coordinate functions.  A complete description of this method

may be found in [5].

Unfortunately, the method just sketched does not seem to apply to more gener-

al D.  As a step toward the solution of this apparently difficult problem, we will
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obtain some results in the case of holomorphic maps g:   C—»P2 which omit two

lines and a conic in a particular relative position.  This turns out to involve the

study of the functional equation /   = e        + e        + e       ,where / and <f>. are

entire functions.

Analytic preliminaries.   A very powerful analytic tool in value distribution

theory is the Nevanlinna characteristic function, which we will use in the form

introduced by Ahlfors.   This technique for expressing the rate of growth of a

meromorphic function is beautifully described in Nevanlinna's books [6], [7]; a

quick summary of its properties is given in Chapter 1 of [5].

If /: C—»P    is a holomorphic map with homogeneous coordinates (/„, •••

/ ), we will denote the characteristic function of / by either T(f, r) or

T(f , •" f ; r).   If f , '", f    have no common zeros and we set

ft(Z) = max log |/.(Z)|,

then

•Of, r) =■*)-f" pire'0) dd - p(0).

If a = (A0, • • •, A ) is a hyperplane in P , and a •/ is the function 2?_0 A ./.,

let n(f, a, r) be the number of zeros of a- f in the disc of radius r, counting

multiplicities.   Then the integrated counting function is defined by

N(f, a, r) = T n(f, a, t) —+ n(f, a, 0) log r.

Nevanlinna's first main theorem states that N(f, a, r) < T(f, r) + 0(1).

If g:   C—>C is an entire function, when there is no risk of confusion we

will denote T(g, 1; r) by just T(g, r) and also use N(g, 0, r) to denote the

obvious thing.

Many of the functions whose study sparked the classical development of

value distribution theory, such as the Weierstrass ^-function and the Riemann

zeta function belong to a subclass of entire functions, those of finite order.   A

holomorphic function of finite order is defined to be one whose Nevanlinna charac-

teristic function is bounded from above by a polynomial in r.     A consequence of the

Hadamard canonical product theorem is that a map of the form (e    , '", e   "),

where the <j>. are entire functions, is of finite order if and only if the map can

be written (e    ,•*•,«) where the iff. are polynomials.

For convenience, the symbol 11  written to the left of an inequality will de-

note that it holds for all positive values of r except possibly for a set of values

having finite total measure.
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We frequently will call upon the Borel lemma (see Borel [2]).

Theorem.   Let e      + e   * + •••+«   * = 0 where the <f>. are entire functions.

Then some <j>.—<f>. is constant, i ¿ j.

A very strong inequality of Nevanlinna is Nevanlinna's logarithmic deriva-

tive inequality:  Let / be a meromorphic function.  Then

r iog+'0

Izl-

f'(z)

f(Z)
aV <0(log T(f, r) + log r)

where log  x denotes max (log x, 0).

We will use the Ahfors defect relations in the case of a curve in P   _ j of

the form (e    , •••, e  ") where the (f>. ate entire functions.  It states

Hit/1, -..,/"; r) < Nie*1 + /2 + ... + e*", 0, r) + 0(log It/1, •», /*;r)).

Wronskians will play a major role in this paper.   The Wronskian of » func-

tions of one variable A y • • •, A    is the determinant

a; A' ... A'

A(n-1)    A(n-l) i(n-D

We will denote this by |Aj • • • A  |.  It vanishes identically if and only if the

functions Ay •••, An ate linearly dependent.   Two useful identities are

|BA1...BAJ«B"|A1...AJ

and

AJ-2|A1...AJ = ||A1A2||A1A3|...|A1AJ|.

If Ay • ' •, A    ate entire functions, it follows from Jensen's theorem and

Nevanlinna's logarithmic derivative inequality that

||/V(|AiA2...Aj,0,r)

< N(AV 0, r) + ... + N(An, 0, r) + O(log T(Aj, .. •, An; r)).

Functional relations of the form /   = e        + '•' + e    ".   Let /, <f>y •••,

ç^    be entire functions on C-   A theorem which follows by classical methods is
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Theorem.   // fd = ed4>1 + e^K        + eä4>" and d > n. then f=Ce4'i for

some i,  C a constant.

We cannot expect so strong a result for d <n.   For example,

<f>.        4>2.2       20 0+0   +log2        20.
z     + e    )   = e    1+e1 + e    '

Hopefully, however, when d <n we should still get that / is a linear combina-

tion of exponentials of entire functions.   The first nontrivial case is d = 2, « = 3.
. ?/Vi Om ^/tS

When f   = e        + e        + e       , it is reasonable to hope that / should be
mi (p 2 0 2

a linear combination of e     , c     , and e     .  In this paper, we will reduce this

question to one involving the comparative rates of growth of the Nevanlinna

characteristic function T (e    , e     , e   3; r) and T(e       , e       , e       ,r).  This

latter question presents analytic difficulties.  Historically, in value distribution

theory, results involving delicate analytic questions have first been established

for the case of functions of finite order.   The theorem will be proved for this case.

Specifically, we have:

Theorem.  Let f, (/>., <f>7, <f>% be entire functions on C satisfying f   =
20!        202        203       L 3

e        + e        +e      .   loen either
01       0 2 ,03

(1) / is a linear combination of e    , e    , and e    , or

(2) ||(3/2)T(e01, e**. e*>-, r)<T(e"t'\ e'*2. e'**; r) +
m,      t/  01     02     03     wO(log T(e    , e    , e   °; r)).

Corollary.   If the map (e     , e    , e     ) is of finite order, or equivalently

N(f, 0, r) < 0(rn)  for some n, then f is a linear combination of e    , e    , e   '

t. /2       2<P1     _2<£2       2*3whenever f   = e        + e        + e

We first will prove the theorem and then the corollary.
-2 201 202 20 a

If /   = e        +e        + e       , we obtain a bound on the number of zeros of
(fi i   0o    0 ^ i

\f e    e     e   3\ unless this function vanishes identically.  We have

/i//1! = .0M(*j - tye2*2 + («?; - «¿p*2*3,,

/|//2| = /2K0'2 - <f>\)e2<t>l + (<f>2 - ^)e\

f\f.*>\ = /»,<*», - *;).*» + (0; - 0'2)e2*2l.

Using, for entire functions A j, • • •, A , the inequality

||M|Aj • -. An\, 0, r) < NUj, 0, r) + •• • + /vUn, 0, r) + 0(log TUj, A¿ r))

we get



A FUNCTIONAL EQUATION AND A NEW PICARD THEOREM 227

II M|/I//1!./!//2!./!//3! |i; o,r)<ak/HG?; -<f>'2)e2*2 + (<¿; -0'3)e2*3], 0, r)

+ ... + /V(/3[(<p3 - cf>\)e24>l + (0'3 - <p'2)e2*2], 0, r)

+ 0(logT(e   Se   2, e  3; r)).

Using the Wronskian identities   |ßAj ...   BAj = B"|Aj '•' An  and

||AjA2| • •.« \A jAn| | = A"-2 |Aj • •• A J to simplify the left-hand side and Nevanlinna's

first main theorem and logarithmic inequality to estimate the right-hand side, we ob-

tain

0,   0„  0„ 20,      20, 20.      2é.
||M/5|/e   le*V 3|, 0, r) < T(e *2, e *3; ,) + T(e *\ e     3; r)

20,      20, 0,      c5        0,
+ T(e     \ e     2;r) + O(log T(e   1,e   2,e   3; r)).

This is the crucial estimate.

We remark in general that by the definition of T" and N we have

T(-fî> • • • • ft ! r> = dT(f0, ■••./„; r) and N(fg, 0, r) = /V(/, 0, r) + Mg, 0, r).

By the Ahlfors defect relations we know

20x      20 20Tie     l, e     % <?     i; r)

,   20 20,        20 0        0        0
< /V(e     1 + e    2 + e    3, 0, r) + O(log T(e   *, e   2, e  3; r))

from which follows

Tt/1, /2, A r) < rV(/, 0, r) + O(log It/1, /2, /3; r)).

A weaker version of the main inequality says

||5N(/, 0, r) < 2[T(e   2,e   \r) + T(e   \ e   ^.ñ^Ue   1, e   2; r)]

+ 0(logT(e   1,e   2, e   3; r))

i        *P 1    02    0^1
provided |/ e     e     e     | does not vanish identically.

So

«51t/1, /', /3; r) < 2[T(e\ e\ r) + T(e\ .% r) + It/1, /2; ,)]

+ O(log It/1, /2, /3; r)).

Using the definition of T, we see

It/1, /2; r) + Tt/1, /3; r) + T(/2, /3; r)

20j+02 20J+0J 202+0j 202+03 20J+0J 20j+02 01+02+0j
= iv^ 5^ » ^ , ^ , e* ,*? , t> ;//

.0, 0, 0,        . .    0, +0, 01+01 ^7+^1        *
= T(e   J, e   2, e   3; r) + T(e   x     2, e   x     3, e  2     3; r).



228 MARK GREEN

So we have

||3T(A A A')

<2T(e   »     2, e   1     3, e   2     3; r) + 0(log T(e   1,e   2,e   3; r)).

Since T(A, B, C; r) = T(e"'A, e^B, e^C; r) by definition, we have

T(e   z     3, e   *     3, <?   l     2; r) = T(e     x,e     2, e     3; r).

I 01       0 ?      0-^1
So we conclude that either |/c     c     e     | vanishes identically, in which

01        02        03 /^\
case f, e    , e    , e       are linearly dependent, or else the inequality (2) of the

conclusion of the theorem holds.   If the linear dependence above does not involve

/, then by the Borel lemma some e   '/e  ' is constant, i 4 j, and we can consoli-
2 201 202

date our functional relation to one of the form /   = e        + e        and the desired

conclusion follows by a result mentioned at the beginning of this section.  This

completes the proof of the theorem.

It remains to prove the corollary.  We do this by showing that for finite order

functions we have

It."*». e'"2, A3; r) < T( A A A; r) + *7tA, A A; r)).
In the finite order case, we may choose <f>v <f>2, d)^ to be polynomials in Z.   If

d is the largest degree to occur, let <f>. = X.Zd + p.(Z), deg p. < d—l, where

not all X. are zero nor are all X. equal.

Then by the definition of T we see

,    .  0,      0,     0,     . .   \xZd     \.Zd     \.Zd     ' 0.      0,     0,
\T(e   l, e  2, e  3; r) - T(e 1     , e 2     , e 3     } r)| < o(T(e   », e   2, e  3; r)).

Likewise,

-0,      -0,      -0, -X.Zd     -X,Zd     -X^Z*

\T(e     l,e     2,e     5;r)-T(e     l     ,e    2    ,e    3     ; r)|

<o(T(AAAr)).
Therefore it will suffice to show

-A,Zd     -\.Zd    -\xZd ,  \,Zd     \.Zd    \,Zd   ,
T(e     1     , e     2     , e    3     ; r) < T(e l     ,e2    ; e 3     ; r).

By the change of variable w = Z" and the definition of T we can reduce to the

case d = 1.   A direct calculation done in Ahlfors [1] gives

T(eAlZ, e*2*, ^3Z; r) = (2t7t)-1(|Ai-A2| + |Aj - X}| + |Xj-Aj|) + 0(l)

and thus

It«" *»*, A2*, A3*; r) = (277r)-1(|A1 - X,| + |A, - X,| + |Xj - A3|) + 0(1),

which completes the proof.
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Algebro-geometric interpretation and open problems.  Very little is presently

known about when the image of a homomorphic curve /: C—»P -D omitting a

hypersurface D with normal crossings and degree > n + 2 must lie in a proper

algebraic hypersurface of P , unless D is a union of hyperplanes or is a Fermât

variety.   One can parlay these theorems into somewhat more general ones, for

example if D is the union of n + 2 hypersurfaces of arbitrary degree, without any

new analytic results.   Even so, it is not at all clear that there should be a theorem

for a general D.

The purpose of this paper is to show that further results can be obtained

through new analytic techniques.   The main theorem on the relation f   = e        +
202 203

e        + e        may be interpreted in the following geometric way:

Theorem.   Let g: C—>P2 be a holomorphic curve of finite order omitting the

two lines {Zj = 0) and \Z2 = 0) and the conic [ZQ + Zj + Z2 = 0¡.   Then the

image of g lies in a line or a conic.

Remark.   The curve (1-e  , y[Te      , ie  ) shows that we cannot eliminate

the case of a conic from the conclusion (the image cannot lie in a line by the

Borel lemma).

Proof.   If g = (g0, gy g2) where the g. never all vanish simultaneously, then

as a never-vanishing entire function is the exponential of some entire function,

there must exist <f>y <f>2, <f>^ so

,_ 4>. ,- 0, i 2 2 2^î
\Mgi = e     i      ^82 = e     »      g0 + 8i+g2 = e

2        201 202 203
so g0 =e        + e        + e

If g is of finite order, it is easy to see   (e     , e    , e   J) is also.   So we
(pi        <p 9 <p i

may conclude gQ is a linear combination oí e    , e     , and e     , say gQ =
mi 02 0 X

«je      + a2e      + a,e     .  If a, = 0, we have that the image of g lies in a line.

Otherwise

((g0 - «lV^T gl - a2y/-¡-g2)/ai)2 = g2 + g2 + g2

which shows the image of g lies in a conic.

The more general situation of a holomorphic curve in P2 omitting any two

lines and a conic in general position reduces to a relation of the form /   =
Ii-tS 9m "i m 9m

e       + e       + e     3 + e      .   Such a relation cannot be dealt with by the same

proof as given for a relation of length three, because it is in fact not necessary
01      02      03 ,04... ,.

that / be a linear combination of e , e , e , and e . This relation can

be treated by an extension of the method of this paper. In many cases, these

techniques give interesting but incomplete information.
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It is easy to show in general that

Me'\ A2, A3; r) <T(A A A; r)<2*A", A2, A3; A
for arbitrary entire functions <f>., <f>2, <f>,.   Insofar as I know, we should have

|||7t A A A r) - Tic"*1, A2, A3; r)| < 0(T(A A A r))
in all cases, and not just in the finite order case.   This analytic fact would imply

the main theorem with the hypothesis of finite order dropped.

By an argument more intricate than that in this paper, I believe it can be shown

that if /   = e       + ... + e    n, then either / is a linear combination of exponen-

tials of entire functions or

iiiTtAAAA...,A-iAr)-2rtA...,Ai
0, 0

<0(logT(e   »,.-.,.   n;r)).
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