On the functional equation $f^{2}=e^{2\phi _{1}}+e^{2\phi _{2}}+e^{2\phi _{3}}\$ and a new Picard theorem
HTML articles powered by AMS MathViewer
- by Mark Green
- Trans. Amer. Math. Soc. 195 (1974), 223-230
- DOI: https://doi.org/10.1090/S0002-9947-1974-0348112-4
- PDF | Request permission
Abstract:
By analogy with E. Borel’s reduction of the classical Picard theorem to an analytic statement about linear relations among exponentials of entire functions, a new Picard theorem is proved by considering the functional relation ${f^2} = {e^{2{\phi _1}}} + {e^{2{\phi _2}}} + {e^{2{\phi _3}}}$ for entire functions. The analytic techniques used are those of Nevanlinna theory.References
- Lars V. Ahlfors, The theory of meromorphic curves, Acta Soc. Sci. Fennicae. Nova Ser. A 3 (1941), no. 4, 31. MR 4309
- Emile Borel, Sur les zéros des fonctions entières, Acta Math. 20 (1897), no. 1, 357–396 (French). MR 1554885, DOI 10.1007/BF02418037 H. Cartan, Sur les zéros des combinaisons linéaires de p fonctions holomorphes données, Mathematica (Cluj) 7 (1933).
- Mark L. Green, Holomorphic maps into complex projective space omitting hyperplanes, Trans. Amer. Math. Soc. 169 (1972), 89–103. MR 308433, DOI 10.1090/S0002-9947-1972-0308433-6
- Mark Lee Green, Some Picard theorems for holomorphic maps to algebraic varieties, Amer. J. Math. 97 (1975), 43–75. MR 367302, DOI 10.2307/2373660
- Rolf Nevanlinna, Eindeutige analytische Funktionen, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band XLVI, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1953 (German). 2te Aufl. MR 0057330 —, Le théorème de Picard-Borel et la théorie des fonctions méromorphes, Gauthier-Villars, Paris, 1929.
- Nobushige Toda, On the functional equation $\sum ^{p}_{i=0}\,a_{i}f_{i}^{n_{}i}=1$, Tohoku Math. J. (2) 23 (1971), 289–299. MR 291460, DOI 10.2748/tmj/1178242646
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 195 (1974), 223-230
- MSC: Primary 30A70; Secondary 30A20
- DOI: https://doi.org/10.1090/S0002-9947-1974-0348112-4
- MathSciNet review: 0348112