Semigroups over trees
HTML articles powered by AMS MathViewer
- by M. W. Mislove
- Trans. Amer. Math. Soc. 195 (1974), 383-400
- DOI: https://doi.org/10.1090/S0002-9947-1974-0352321-8
- PDF | Request permission
Abstract:
A semigroup over a tree is a compact semigroup S such that $\mathcal {H}$ is a congruence on S and $S/\mathcal {H}$ is an abelian tree with idempotent endpoints. Each such semigroup is characterized as being constructible from cylindrical subsemigroups of S and the tree $S/\mathcal {H}$ in a manner similar to the construction of the hormos. Indeed, the hormos is shown to be a particular example of the construction given herein when $S/\mathcal {H}$ is an I-semigroup. Several results about semigroups whose underlying space is a tree are also established as lemmata for the main results.References
- K. W. Folley, Semigroups, Proc. Sympos., Semigroups, Wayne State University, Detroit, Mich. (June 27-29, 1968), Academic Press, New York, 1969. MR 41 #3637.
- Karl Heinrich Hofmann and Michael Mislove, The centralizing theorem for left normal groups of units in compact monoids, Semigroup Forum 3 (1971/72), no.ย 1, 31โ42. MR 311830, DOI 10.1007/BF02572939
- Karl Heinrich Hofmann and Paul S. Mostert, Elements of compact semigroups, Charles E. Merrill Books, Inc., Columbus, Ohio, 1966. MR 0209387
- Robert P. Hunter, On the semigroup structure of continua, Trans. Amer. Math. Soc. 93 (1959), 356โ368. MR 109194, DOI 10.1090/S0002-9947-1959-0109194-X
- John L. Kelley, General topology, D. Van Nostrand Co., Inc., Toronto-New York-London, 1955. MR 0070144
- Robert J. Koch, Threads in compact semigroups, Math. Z. 86 (1964), 312โ316. MR 171268, DOI 10.1007/BF01110405
- R. J. Koch and I. S. Krule, Weak cutpoint ordering on hereditarily unicoherent continua, Proc. Amer. Math. Soc. 11 (1960), 679โ681. MR 120606, DOI 10.1090/S0002-9939-1960-0120606-1
- R. J. Koch and A. D. Wallace, Maximal ideals in compact semigroups, Duke Math. J. 21 (1954), 681โ685. MR 63381 M. W. Mislove, Four problems about compact semigroups, Doctoral Dissertation, University of Tennessee, 1969.
- Leopoldo Nachbin, Sur les espaces topologiques ordonnรฉs, C. R. Acad. Sci. Paris 226 (1948), 381โ382 (French). MR 23516
- R. C. Phillips, Interval clans with nondegenerate kernel, Proc. Amer. Math. Soc. 14 (1963), 396โ400. MR 148038, DOI 10.1090/S0002-9939-1963-0148038-3
- L. E. Ward Jr., On dendritic sets, Duke Math. J. 25 (1958), 505โ513. MR 98357
- L. E. Ward Jr., Mobs, trees, and fixed points, Proc. Amer. Math. Soc. 8 (1957), 798โ804. MR 97036, DOI 10.1090/S0002-9939-1957-0097036-4
- L. E. Ward Jr., A note on dendrites and trees, Proc. Amer. Math. Soc. 5 (1954), 992โ994. MR 71759, DOI 10.1090/S0002-9939-1954-0071759-2
- M. W. Mislove, The existence of $\textrm {Irr}(X)$, Trans. Amer. Math. Soc. 175 (1973), 123โ140. MR 325839, DOI 10.1090/S0002-9947-1973-0325839-0
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 195 (1974), 383-400
- MSC: Primary 22A15
- DOI: https://doi.org/10.1090/S0002-9947-1974-0352321-8
- MathSciNet review: 0352321