## Separable topological algebras. I

HTML articles powered by AMS MathViewer

- by Michael J. Liddell
- Trans. Amer. Math. Soc.
**195**(1974), 31-59 - DOI: https://doi.org/10.1090/S0002-9947-1974-0352985-9
- PDF | Request permission

## Abstract:

Let*A*be a complete topological algebra with identity and

*B*a subalgebra of the center of

*A*. A notion of relative topological tensor product ${\hat \otimes _B}$ for topological

*A*modules and the resultant relative homology theory are introduced. Algebras of bidimension zero in this sense are called separable relative to

*B*. Structure theorems are proved for such algebras under various topological assumptions on the algebra and its maximal ideal space.

## References

- Maurice Auslander and Oscar Goldman,
*The Brauer group of a commutative ring*, Trans. Amer. Math. Soc.**97**(1960), 367–409. MR**121392**, DOI 10.1090/S0002-9947-1960-0121392-6 - Henri Cartan and Samuel Eilenberg,
*Homological algebra*, Princeton University Press, Princeton, N. J., 1956. MR**0077480** - Frank DeMeyer and Edward Ingraham,
*Separable algebras over commutative rings*, Lecture Notes in Mathematics, Vol. 181, Springer-Verlag, Berlin-New York, 1971. MR**0280479**
A. G. Dors, - Per Enflo,
*A counterexample to the approximation problem in Banach spaces*, Acta Math.**130**(1973), 309–317. MR**402468**, DOI 10.1007/BF02392270 - J. M. G. Fell,
*The structure of algebras of operator fields*, Acta Math.**106**(1961), 233–280. MR**164248**, DOI 10.1007/BF02545788 - Alexandre Grothendieck,
*Produits tensoriels topologiques et espaces nucléaires*, Mem. Amer. Math. Soc.**16**(1955), Chapter 1: 196 pp.; Chapter 2: 140 (French). MR**75539** - Irving Kaplansky,
*The structure of certain operator algebras*, Trans. Amer. Math. Soc.**70**(1951), 219–255. MR**42066**, DOI 10.1090/S0002-9947-1951-0042066-0
—, - Joachim Lambek,
*Lectures on rings and modules*, Blaisdell Publishing Co. [Ginn and Co.], Waltham, Mass.-Toronto, Ont.-London, 1966. With an appendix by Ian G. Connell. MR**0206032** - Saunders MacLane,
*Homology*, 1st ed., Die Grundlehren der mathematischen Wissenschaften, Band 114, Springer-Verlag, Berlin-New York, 1967. MR**0349792** - Anastasios Mallios,
*On the spectra of topological algebras*, J. Functional Analysis**3**(1969), 301–309. MR**0239420**, DOI 10.1016/0022-1236(69)90044-5 - Ernest A. Michael,
*Locally multiplicatively-convex topological algebras*, Mem. Amer. Math. Soc.**11**(1952), 79. MR**51444** - Helmut H. Schaefer,
*Topological vector spaces*, The Macmillan Company, New York; Collier Macmillan Ltd., London, 1966. MR**0193469** - Jun Tomiyama and Masamichi Takesaki,
*Applications of fibre bundles to the certain class of $C^{\ast }$-algebras*, Tohoku Math. J. (2)**13**(1961), 498–522. MR**139025**, DOI 10.2748/tmj/1178244253 - Joseph L. Taylor,
*Homology and cohomology for topological algebras*, Advances in Math.**9**(1972), 137–182. MR**328624**, DOI 10.1016/0001-8708(72)90016-3 - Joseph L. Taylor,
*A general framework for a multi-operator functional calculus*, Advances in Math.**9**(1972), 183–252. MR**328625**, DOI 10.1016/0001-8708(72)90017-5 - François Trèves,
*Topological vector spaces, distributions and kernels*, Academic Press, New York-London, 1967. MR**0225131**

*On the spectrum of an F-algebra*, Ph.D. thesis, University of Utah, Salt Lake City, Utah, 1970.

*Algebraic and analytic aspects of operator algebras*, Regional Conference Series in Math., no. 1, Amer. Math. Soc., Providence, R. I., 1969.

## Bibliographic Information

- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**195**(1974), 31-59 - MSC: Primary 46H05; Secondary 46M20
- DOI: https://doi.org/10.1090/S0002-9947-1974-0352985-9
- MathSciNet review: 0352985