The convertibility of $\textrm {Ext}^{n}_{R}(-, A)$
HTML articles powered by AMS MathViewer
- by James L. Hein
- Trans. Amer. Math. Soc. 195 (1974), 243-264
- DOI: https://doi.org/10.1090/S0002-9947-1974-0360560-5
- PDF | Request permission
Abstract:
Let R be a commutative ring and $\operatorname {Mod} (R)$ the category of R-modules. Call a contravariant functor $F:\operatorname {Mod} (R) \to \operatorname {Mod} (R)$ convertible if for every direct system $\{ {X_\alpha }\}$ in $\operatorname {Mod} (R)$ there is a natural isomorphism $\gamma :F(\lim \limits _ \to {X_\alpha }) \to \lim \limits _ \leftarrow F({X_\alpha })$. If A is in $\operatorname {Mod} (R)$ and n is a positive integer then ${\text {Ext}}_R^n( - ,A)$ is not in general convertible. The purpose of this paper is to study the convertibility of Ext, and in so doing to find out more about Ext as well as the modules A that make ${\text {Ext}}_R^n( - ,A)$ convertible for all n. It is shown that ${\text {Ext}}_R^n( - ,A)$ is convertible for all A having finite length and all n. If R is Noetherian then A can be Artinian, and if R is semilocal Noetherian then A can be linearly compact in the discrete topology. Characterizations are studied and it is shown that if A is a finitely generated module over the semilocal Noetherian ring R, then ${\text {Ext}}_R^1( - ,A)$ is convertible if and only if A is complete in the J-adic topology where J is the Jacobson radical of R. Morita-duality is characterized by the convertibility of ${\text {Ext}}_R^1( - ,R)$ when R is a Noetherian ring, a reflexive ring or an almost maximal valuation ring. Applications to the vanishing of Ext are studied.References
- Hyman Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466â488. MR 157984, DOI 10.1090/S0002-9947-1960-0157984-8 N. Bourbaki, ElĂ©ments de mathĂ©matique, Fasc. XXVIII. AlgĂšbre commutative. Chap. 3: Graduations, filtrations et topologies, ActualitĂ©s Sci. Indust., no. 1293, Hermann, Paris, 1961. MR 30 #2027.
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- Stephen U. Chase, Direct products of modules, Trans. Amer. Math. Soc. 97 (1960), 457â473. MR 120260, DOI 10.1090/S0002-9947-1960-0120260-3
- Michel Raynaud and Laurent Gruson, CritĂšres de platitude et de projectivitĂ©. Techniques de âplatificationâ dâun module, Invent. Math. 13 (1971), 1â89 (French). MR 308104, DOI 10.1007/BF01390094
- C. U. Jensen, Les foncteurs dérivés de $\underleftarrow {\mmlToken {mi}{lim}}$ et leurs applications en théorie des modules, Lecture Notes in Mathematics, Vol. 254, Springer-Verlag, Berlin-New York, 1972. MR 0407091
- Daniel Lazard, Sur les modules plats, C. R. Acad. Sci. Paris 258 (1964), 6313â6316 (French). MR 168625
- Eben Matlis, Injective modules over Noetherian rings, Pacific J. Math. 8 (1958), 511â528. MR 99360
- Eben Matlis, Injective modules over PrĂŒfer rings, Nagoya Math. J. 15 (1959), 57â69. MR 109840
- Eben Matlis, Modules with descending chain condition, Trans. Amer. Math. Soc. 97 (1960), 495â508. MR 169879, DOI 10.1090/S0002-9947-1960-0169879-4
- Eben Matlis, Cotorsion modules, Mem. Amer. Math. Soc. 49 (1964), 66. MR 178025
- Eben Matlis, Reflexive domains, J. Algebra 8 (1968), 1â33. MR 220713, DOI 10.1016/0021-8693(68)90031-8
- Bruno J. MĂŒller, Linear compactness and Morita duality, J. Algebra 16 (1970), 60â66. MR 263875, DOI 10.1016/0021-8693(70)90040-2
- Takeshi Onodera, Linearly compact modules and cogenerators, J. Fac. Sci. Hokkaido Univ. Ser. I 22 (1972), 116â125. MR 0302705
- Jan-Erik Roos, Sur les foncteurs dĂ©rivĂ©s de $\underleftarrow \lim$. Applications, C. R. Acad. Sci. Paris 252 (1961), 3702â3704 (French). MR 132091
- Jean-Pierre Serre, AlgĂšbre locale. MultiplicitĂ©s, Lecture Notes in Mathematics, vol. 11, Springer-Verlag, Berlin-New York, 1965 (French). Cours au CollĂšge de France, 1957â1958, rĂ©digĂ© par Pierre Gabriel; Seconde Ă©dition, 1965. MR 0201468
- P. VĂĄmos, The dual of the notion of âfinitely generatedâ, J. London Math. Soc. 43 (1968), 643â646. MR 248171, DOI 10.1112/jlms/s1-43.1.643
- Daniel Zelinsky, Linearly compact modules and rings, Amer. J. Math. 75 (1953), 79â90. MR 51832, DOI 10.2307/2372616
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 195 (1974), 243-264
- MSC: Primary 13D99
- DOI: https://doi.org/10.1090/S0002-9947-1974-0360560-5
- MathSciNet review: 0360560