On free products of finitely generated abelian groups
HTML articles powered by AMS MathViewer
- by Anthony M. Gaglione
- Trans. Amer. Math. Soc. 195 (1974), 421-430
- DOI: https://doi.org/10.1090/S0002-9947-1974-0360840-3
- PDF | Request permission
Abstract:
Let the group G be a free product of a finite number of finitely generated abelian groups. Let $G’$ be its commutator subgroup. It is proven here that the “quasi-G-simple” commutators, defined below, are free generators of $G’$.References
- Michael Anshel and Robert Prener, On free products of finite abelian groups, Proc. Amer. Math. Soc. 34 (1972), 343–345. MR 302768, DOI 10.1090/S0002-9939-1972-0302768-4
- S. Bachmuth, Automorphisms of free metabelian groups, Trans. Amer. Math. Soc. 118 (1965), 93–104. MR 180597, DOI 10.1090/S0002-9947-1965-0180597-3
- K. W. Gruenberg, Residual properties of infinite soluble groups, Proc. London Math. Soc. (3) 7 (1957), 29–62. MR 87652, DOI 10.1112/plms/s3-7.1.29
- Marshall Hall Jr., The theory of groups, The Macmillan Company, New York, N.Y., 1959. MR 0103215 W. Magnus, A. Karass and D. Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations. Pure and Appl. Math., vol. 13, Interscience, New York, 1966. MR 34 #7617. R. A. Prener, The lower central series of special groups generated by elements of order two, Ph.D. Thesis, The Polytechnic Institute of Brooklyn, Brooklyn, N. Y., 1969.
- Hermann V. Waldinger, Addendum to: “The lower central series of groups of a special class”, J. Algebra 25 (1973), 172–175. MR 316569, DOI 10.1016/0021-8693(73)90086-0
- Hermann V. Waldinger, The lower central series of groups of a special class, J. Algebra 14 (1970), 229–244. MR 260882, DOI 10.1016/0021-8693(70)90124-9
- Hermann V. Waldinger, Two theorems in the commutator calculus, Trans. Amer. Math. Soc. 167 (1972), 389–397. MR 294467, DOI 10.1090/S0002-9947-1972-0294467-7
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 195 (1974), 421-430
- MSC: Primary 20F05
- DOI: https://doi.org/10.1090/S0002-9947-1974-0360840-3
- MathSciNet review: 0360840