## The closure of the space of homeomorphisms on a manifold

HTML articles powered by AMS MathViewer

- by William E. Haver
- Trans. Amer. Math. Soc.
**195**(1974), 401-419 - DOI: https://doi.org/10.1090/S0002-9947-1974-0362375-0
- PDF | Request permission

## Abstract:

The space, $\bar H(M)$, of all mappings of the compact manifold*M*onto itself which can be approximated arbitrarily closely by homeomorphisms is studied. It is shown that $\bar H(M)$ is homogeneous and weakly locally contractible. If

*M*is a compact 2-manifold without boundary, then $\bar H(M)$ is shown to be locally contractible.

## References

- J. W. Alexander,
- R. D. Anderson,
*Strongly negligible sets in Fréchet manifolds*, Bull. Amer. Math. Soc.**75**(1969), 64–67. MR**238358**, DOI 10.1090/S0002-9904-1969-12146-4
—, - Steve Armentrout,
*Concerning cellular decompositions of $3$-manifolds that yield $3$-manifolds*, Trans. Amer. Math. Soc.**133**(1968), 307–332. MR**230296**, DOI 10.1090/S0002-9947-1968-0230296-7 - Marston Morse,
*A reduction of the Schoenflies extension problem*, Bull. Amer. Math. Soc.**66**(1960), 113–115. MR**117694**, DOI 10.1090/S0002-9904-1960-10420-X - A. V. Černavskiĭ,
*Local contractibility of the group of homeomorphisms of a manifold.*, Dokl. Akad. Nauk SSSR**182**(1968), 510–513 (Russian). MR**0236948** - Robert D. Edwards and Robion C. Kirby,
*Deformations of spaces of imbeddings*, Ann. of Math. (2)**93**(1971), 63–88. MR**283802**, DOI 10.2307/1970753 - Samuel Eilenberg and R. L. Wilder,
*Uniform local connectedness and contractibility*, Amer. J. Math.**64**(1942), 613–622. MR**7100**, DOI 10.2307/2371708 - Ross Geoghegan,
*On spaces of homeomorphisms, embeddings and functions. I*, Topology**11**(1972), 159–177. MR**295281**, DOI 10.1016/0040-9383(72)90004-3 - Ross Geoghegan and David W. Henderson,
*Stable function spaces*, Amer. J. Math.**95**(1973), 461–470. MR**339269**, DOI 10.2307/2373725 - Olof Hanner,
*Some theorems on absolute neighborhood retracts*, Ark. Mat.**1**(1951), 389–408. MR**43459**, DOI 10.1007/BF02591376 - William E. Haver,
*Homeomorphisms and $UV^{\infty }$ maps*, Proc. First Conf. on Monotone Mappings and Open Mappings (SUNY at Binghamton, Binghamton, N.Y., 1970) State Univ. of New York at Binghamton, Binghamton, N.Y., 1971, pp. 112–121. MR**0283770**
—, - Witold Hurewicz and Henry Wallman,
*Dimension Theory*, Princeton Mathematical Series, vol. 4, Princeton University Press, Princeton, N. J., 1941. MR**0006493** - R. C. Lacher,
*Cell-like mappings. I*, Pacific J. Math.**30**(1969), 717–731. MR**251714** - R. C. Lacher,
*Cell-like mappings. II*, Pacific J. Math.**35**(1970), 649–660. MR**281217** - J. Alexander Lees,
*Immersions and surgeries of topological manifolds*, Bull. Amer. Math. Soc.**75**(1969), 529–534. MR**239602**, DOI 10.1090/S0002-9904-1969-12231-7 - W. K. Mason,
*The space $H(M)$ of homeomorphisms of a compact manifold onto itself is homeomorphic to $H(M)$ minus any $\sigma$-compact set*, Amer. J. Math.**92**(1970), 541–551. MR**281234**, DOI 10.2307/2373359 - W. K. Mason,
*The space of all self-homeomorphisms of a two-cell which fix the cell’s boundary is an absolute retract*, Trans. Amer. Math. Soc.**161**(1971), 185–205. MR**286067**, DOI 10.1090/S0002-9947-1971-0286067-9 - L. C. Siebenmann,
*Approximating cellular maps by homeomorphisms*, Topology**11**(1972), 271–294. MR**295365**, DOI 10.1016/0040-9383(72)90014-6

*On the deformation of an n-cell*, Proc. Nat. Acad. Sci. U.S.A.

**9**(1923), 406-407.

*Spaces of homeomorphisms of finite graphs*(to appear).

*Monotone mappings of a two-disk onto itself which fix the disk’s boundary can be canonically approximated by homeomorphisms*, Pacific J. Math. (to appear).

## Bibliographic Information

- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**195**(1974), 401-419 - MSC: Primary 57E05; Secondary 57A20
- DOI: https://doi.org/10.1090/S0002-9947-1974-0362375-0
- MathSciNet review: 0362375