The slimmest geometric lattices

Authors:
Thomas A. Dowling and Richard M. Wilson

Journal:
Trans. Amer. Math. Soc. **196** (1974), 203-215

MSC:
Primary 05B35

DOI:
https://doi.org/10.1090/S0002-9947-1974-0345849-8

MathSciNet review:
0345849

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Whitney numbers of a finite geometric lattice *L* of rank *r* are the numbers ${W_k}$ of elements of rank *k* and the coefficients ${w_k}$ of the characteristic polynomial of *L*, for $0 \leq k \leq r$. We establish the following lower bounds for the ${W_k}$ and the absolute values $w_k^ + = {( - 1)^k}{w_k}$ and describe the lattices for which equality holds (nontrivially) in each case: \[ {W_k} \geq \left ( {\begin {array}{*{20}{c}} r \hfill & - \hfill & 2 \hfill \\ k \hfill & - \hfill & 1 \hfill \\ \end {array} } \right )(n - r) + \left ( {\begin {array}{*{20}{c}} r \hfill \\ k \hfill \\ \end {array} } \right ),\quad w_k^ + \geq \left ( {\begin {array}{*{20}{c}} r \hfill & - \hfill & 1 \hfill \\ k \hfill & - \hfill & 1 \hfill \\ \end {array} } \right )(n - r) + \left ( {\begin {array}{*{20}{c}} r \hfill \\ k \hfill \\ \end {array} } \right ),\] where $n = {W_1}$ is the number of points of *L*.

- J. G. Basterfield and L. M. Kelly,
*A characterization of sets of $n$ points which determine $n$ hyperplanes*, Proc. Cambridge Philos. Soc.**64**(1968), 585â€“588. MR**233719**, DOI https://doi.org/10.1017/s0305004100043243 - Garrett Birkhoff,
*Lattice theory*, 3rd ed., American Mathematical Society Colloquium Publications, Vol. XXV, American Mathematical Society, Providence, R.I., 1967. MR**0227053**
J. E. Blackburn, H. H. Crapo and D. A. Higgs, - Henry H. Crapo and Gian-Carlo Rota,
*On the foundations of combinatorial theory: Combinatorial geometries*, Preliminary edition, The M.I.T. Press, Cambridge, Mass.-London, 1970. MR**0290980** - Thomas A. Dowling and Richard M. Wilson,
*Whitney number inequalities for geometric lattices*, Proc. Amer. Math. Soc.**47**(1975), 504â€“512. MR**354422**, DOI https://doi.org/10.1090/S0002-9939-1975-0354422-3 - Curtis Greene,
*A rank inequality for finite geometric lattices*, J. Combinatorial Theory**9**(1970), 357â€“364. MR**266824** - Curtis Greene,
*An inequality for the MĂ¶bius function of a geometric lattice*, MĂ¶bius algebras (Proc. Conf., Univ. Waterloo, Waterloo, Ont., 1971), Univ. Waterloo, Waterloo, Ont., 1971, pp. 149â€“153. MR**0349444** - L. H. Harper,
*Stirling behavior is asymptotically normal*, Ann. Math. Statist.**38**(1967), 410â€“414. MR**211432**, DOI https://doi.org/10.1214/aoms/1177698956 - Elliott H. Lieb,
*Concavity properties and a generating function for Stirling numbers*, J. Combinatorial Theory**5**(1968), 203â€“206. MR**230635** - Gian-Carlo Rota,
*On the foundations of combinatorial theory. I. Theory of MĂ¶bius functions*, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete**2**(1964), 340â€“368 (1964). MR**174487**, DOI https://doi.org/10.1007/BF00531932 - Peyton Young, U. S. R. Murty, and Jack Edmonds,
*Equicardinal matroids and matroid-designs*, Proc. Second Chapel Hill Conf. on Combinatorial Mathematics and its Applications (Univ. North Carolina, Chapel Hill, N.C., 1970) Univ. North Carolina, Chapel Hill, N.C., 1970, pp. 498â€“542. MR**0266782**

*A catalogue of combinatorial geometries*, University of Waterloo, Waterloo, Ontario, 1969.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
05B35

Retrieve articles in all journals with MSC: 05B35

Additional Information

Article copyright:
© Copyright 1974
American Mathematical Society