The slimmest geometric lattices
HTML articles powered by AMS MathViewer
- by Thomas A. Dowling and Richard M. Wilson
- Trans. Amer. Math. Soc. 196 (1974), 203-215
- DOI: https://doi.org/10.1090/S0002-9947-1974-0345849-8
- PDF | Request permission
Abstract:
The Whitney numbers of a finite geometric lattice L of rank r are the numbers ${W_k}$ of elements of rank k and the coefficients ${w_k}$ of the characteristic polynomial of L, for $0 \leq k \leq r$. We establish the following lower bounds for the ${W_k}$ and the absolute values $w_k^ + = {( - 1)^k}{w_k}$ and describe the lattices for which equality holds (nontrivially) in each case: \[ {W_k} \geq \left ( {\begin {array}{*{20}{c}} r \hfill & - \hfill & 2 \hfill \\ k \hfill & - \hfill & 1 \hfill \\ \end {array} } \right )(n - r) + \left ( {\begin {array}{*{20}{c}} r \hfill \\ k \hfill \\ \end {array} } \right ),\quad w_k^ + \geq \left ( {\begin {array}{*{20}{c}} r \hfill & - \hfill & 1 \hfill \\ k \hfill & - \hfill & 1 \hfill \\ \end {array} } \right )(n - r) + \left ( {\begin {array}{*{20}{c}} r \hfill \\ k \hfill \\ \end {array} } \right ),\] where $n = {W_1}$ is the number of points of L.References
- J. G. Basterfield and L. M. Kelly, A characterization of sets of $n$ points which determine $n$ hyperplanes, Proc. Cambridge Philos. Soc. 64 (1968), 585–588. MR 233719, DOI 10.1017/s0305004100043243
- Garrett Birkhoff, Lattice theory, 3rd ed., American Mathematical Society Colloquium Publications, Vol. XXV, American Mathematical Society, Providence, R.I., 1967. MR 0227053 J. E. Blackburn, H. H. Crapo and D. A. Higgs, A catalogue of combinatorial geometries, University of Waterloo, Waterloo, Ontario, 1969.
- Henry H. Crapo and Gian-Carlo Rota, On the foundations of combinatorial theory: Combinatorial geometries, Preliminary edition, The M.I.T. Press, Cambridge, Mass.-London, 1970. MR 0290980
- Thomas A. Dowling and Richard M. Wilson, Whitney number inequalities for geometric lattices, Proc. Amer. Math. Soc. 47 (1975), 504–512. MR 354422, DOI 10.1090/S0002-9939-1975-0354422-3
- Curtis Greene, A rank inequality for finite geometric lattices, J. Combinatorial Theory 9 (1970), 357–364. MR 266824, DOI 10.1016/S0021-9800(70)80090-4
- Curtis Greene, An inequality for the Möbius function of a geometric lattice, Möbius algebras (Proc. Conf., Univ. Waterloo, Waterloo, Ont., 1971) Univ. Waterloo, Waterloo, Ont., 1971, pp. 149–153. MR 0349444
- L. H. Harper, Stirling behavior is asymptotically normal, Ann. Math. Statist. 38 (1967), 410–414. MR 211432, DOI 10.1214/aoms/1177698956
- Elliott H. Lieb, Concavity properties and a generating function for Stirling numbers, J. Combinatorial Theory 5 (1968), 203–206. MR 230635, DOI 10.1016/S0021-9800(68)80057-2
- Gian-Carlo Rota, On the foundations of combinatorial theory. I. Theory of Möbius functions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2 (1964), 340–368 (1964). MR 174487, DOI 10.1007/BF00531932
- Peyton Young, U. S. R. Murty, and Jack Edmonds, Equicardinal matroids and matroid-designs, Proc. Second Chapel Hill Conf. on Combinatorial Mathematics and its Applications (Univ. North Carolina, Chapel Hill, N.C., 1970) Univ. North Carolina, Chapel Hill, N.C., 1970, pp. 498–542. MR 0266782
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 196 (1974), 203-215
- MSC: Primary 05B35
- DOI: https://doi.org/10.1090/S0002-9947-1974-0345849-8
- MathSciNet review: 0345849