## Maximal quotients of semiprime PI-algebras

HTML articles powered by AMS MathViewer

- by Louis Halle Rowen
- Trans. Amer. Math. Soc.
**196**(1974), 127-135 - DOI: https://doi.org/10.1090/S0002-9947-1974-0347887-8
- PDF | Request permission

## Abstract:

J. Fisher [3] initiated the study of maximal quotient rings of semiprime PI-rings by noting that the singular ideal of any semiprime Pi-ring*R*is 0; hence there is a von Neumann regular maximal quotient ring $Q(R)$ of

*R*. In this paper we characterize $Q(R)$ in terms of essential ideals of

*C*= cent

*R*. This permits immediate reduction of many facets of $Q(R)$ to the commutative case, yielding some new results and some rapid proofs of known results. Direct product decompositions of $Q(R)$ are given, and $Q(R)$ turns out to have an involution when

*R*has an involution.

## References

- S. A. Amitsur,
*On rings of quotients*, Symposia Mathematica, Vol. VIII (Convegno sulle Algebre Associative, INDAM, Rome, 1970) Academic Press, London, 1972, pp. 149–164. MR**0332855** - Efraim P. Armendariz and Stuart A. Steinberg,
*Regular self-injective rings with a polynomial identity*, Trans. Amer. Math. Soc.**190**(1974), 417–425. MR**354763**, DOI 10.1090/S0002-9947-1974-0354763-3 - Joe W. Fisher,
*Structure of semiprime P.I. rings*, Proc. Amer. Math. Soc.**39**(1973), 465–467. MR**320049**, DOI 10.1090/S0002-9939-1973-0320049-0 - Edward Formanek,
*Central polynomials for matrix rings*, J. Algebra**23**(1972), 129–132. MR**302689**, DOI 10.1016/0021-8693(72)90050-6 - R. E. Johnson,
*Quotient rings of rings with zero singular ideal*, Pacific J. Math.**11**(1961), 1385–1392. MR**143779**, DOI 10.2140/pjm.1961.11.1385 - Wallace S. Martindale III,
*On semiprime P. I. rings*, Proc. Amer. Math. Soc.**40**(1973), 365–369. MR**318215**, DOI 10.1090/S0002-9939-1973-0318215-3 - Claudio Procesi,
*On a theorem of M. Artin*, J. Algebra**22**(1972), 309–315. MR**302681**, DOI 10.1016/0021-8693(72)90148-2 - Louis Rowen,
*Some results on the center of a ring with polynomial identity*, Bull. Amer. Math. Soc.**79**(1973), 219–223. MR**309996**, DOI 10.1090/S0002-9904-1973-13162-3 - Louis Halle Rowen,
*A subdirect decomposition of semiprime rings and its application to maximal quotient rings*, Proc. Amer. Math. Soc.**46**(1974), 176–180. MR**349728**, DOI 10.1090/S0002-9939-1974-0349728-7

## Bibliographic Information

- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**196**(1974), 127-135 - MSC: Primary 16A38
- DOI: https://doi.org/10.1090/S0002-9947-1974-0347887-8
- MathSciNet review: 0347887