Maximal quotients of semiprime PI-algebras
HTML articles powered by AMS MathViewer
- by Louis Halle Rowen
- Trans. Amer. Math. Soc. 196 (1974), 127-135
- DOI: https://doi.org/10.1090/S0002-9947-1974-0347887-8
- PDF | Request permission
Abstract:
J. Fisher [3] initiated the study of maximal quotient rings of semiprime PI-rings by noting that the singular ideal of any semiprime Pi-ring R is 0; hence there is a von Neumann regular maximal quotient ring $Q(R)$ of R. In this paper we characterize $Q(R)$ in terms of essential ideals of C = cent R. This permits immediate reduction of many facets of $Q(R)$ to the commutative case, yielding some new results and some rapid proofs of known results. Direct product decompositions of $Q(R)$ are given, and $Q(R)$ turns out to have an involution when R has an involution.References
- S. A. Amitsur, On rings of quotients, Symposia Mathematica, Vol. VIII (Convegno sulle Algebre Associative, INDAM, Rome, 1970) Academic Press, London, 1972, pp. 149–164. MR 0332855
- Efraim P. Armendariz and Stuart A. Steinberg, Regular self-injective rings with a polynomial identity, Trans. Amer. Math. Soc. 190 (1974), 417–425. MR 354763, DOI 10.1090/S0002-9947-1974-0354763-3
- Joe W. Fisher, Structure of semiprime P.I. rings, Proc. Amer. Math. Soc. 39 (1973), 465–467. MR 320049, DOI 10.1090/S0002-9939-1973-0320049-0
- Edward Formanek, Central polynomials for matrix rings, J. Algebra 23 (1972), 129–132. MR 302689, DOI 10.1016/0021-8693(72)90050-6
- R. E. Johnson, Quotient rings of rings with zero singular ideal, Pacific J. Math. 11 (1961), 1385–1392. MR 143779, DOI 10.2140/pjm.1961.11.1385
- Wallace S. Martindale III, On semiprime P. I. rings, Proc. Amer. Math. Soc. 40 (1973), 365–369. MR 318215, DOI 10.1090/S0002-9939-1973-0318215-3
- Claudio Procesi, On a theorem of M. Artin, J. Algebra 22 (1972), 309–315. MR 302681, DOI 10.1016/0021-8693(72)90148-2
- Louis Rowen, Some results on the center of a ring with polynomial identity, Bull. Amer. Math. Soc. 79 (1973), 219–223. MR 309996, DOI 10.1090/S0002-9904-1973-13162-3
- Louis Halle Rowen, A subdirect decomposition of semiprime rings and its application to maximal quotient rings, Proc. Amer. Math. Soc. 46 (1974), 176–180. MR 349728, DOI 10.1090/S0002-9939-1974-0349728-7
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 196 (1974), 127-135
- MSC: Primary 16A38
- DOI: https://doi.org/10.1090/S0002-9947-1974-0347887-8
- MathSciNet review: 0347887