Axisymmetric harmonic interpolation polynomials in $\textbf {R}^{N}$
HTML articles powered by AMS MathViewer
- by Morris Marden
- Trans. Amer. Math. Soc. 196 (1974), 385-402
- DOI: https://doi.org/10.1090/S0002-9947-1974-0348130-6
- PDF | Request permission
Abstract:
Corresponding to a given function $F(x,\rho )$ which is axisymnetric harmonic in an axisymmetric region $\Omega \subset {{\text {R}}^3}$ and to a set of $n + 1$ circles ${C_n}$ in an axisymmetric subregion $A \subset \Omega$, an axisymmetric harmonic polynomial ${\Lambda _n}(x,\rho ;{C_n})$ is found which on the ${C_n}$ interpolates to $F(x,\rho )$ or to its partial derivatives with respect to x. An axisymmetric subregion $B \subset \Omega$ is found such that ${\Lambda _n}(x,\rho ;{C_n})$ converges uniformly to $F(x,\rho )$ on the closure of B. Also a ${\Lambda _n}(x,\rho ;{x_0},{\rho _0})$ is determined which, together with its first n partial derivatives with respect to x, coincides with $F(x,\rho )$ on a single circle $({x_0},{\rho _0})$ in $\Omega$ and converges uniformly to $F(x,\rho )$ in a closed torus with $({x_0},{\rho _0})$ as central circle.References
- Stefan Bergman, Integral operators in the theory of linear partial differential equations, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Heft 23, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1961. MR 0141880, DOI 10.1007/978-3-642-64985-1
- Philip J. Davis, Interpolation and approximation, Blaisdell Publishing Co. [Ginn and Co.], New York-Toronto-London, 1963. MR 0157156
- Robert P. Gilbert, Function theoretic methods in partial differential equations, Mathematics in Science and Engineering, Vol. 54, Academic Press, New York-London, 1969. MR 0241789
- Oliver Dimon Kellogg, Foundations of potential theory, Die Grundlehren der mathematischen Wissenschaften, Band 31, Springer-Verlag, Berlin-New York, 1967. Reprint from the first edition of 1929. MR 0222317, DOI 10.1007/978-3-642-86748-4
- Morris Marden, Value distribution of harmonic polynomials in several real variables, Trans. Amer. Math. Soc. 159 (1971), 137â154. MR 279323, DOI 10.1090/S0002-9947-1971-0279323-1
- L. M. Milne-Thomson, Theoretical hydrodynamics, The Macmillan Company, New York, 1956. 3rd ed. MR 0075724
- Gabor Szegö, Orthogonal polynomials, American Mathematical Society Colloquium Publications, Vol. 23, American Mathematical Society, Providence, R.I., 1959. Revised ed. MR 0106295
- V. I. Smirnov and N. A. Lebedev, Konstruktivnaya teoriya funktsiÄ kompleksnogo peremennogo, Izdat. âNaukaâ, Moscow, 1964 (Russian). MR 0171926
- J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, 3rd ed., American Mathematical Society Colloquium Publications, Vol. XX, American Mathematical Society, Providence, R.I., 1960. MR 0218587
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 196 (1974), 385-402
- MSC: Primary 31B99
- DOI: https://doi.org/10.1090/S0002-9947-1974-0348130-6
- MathSciNet review: 0348130