Fixed point iterations using infinite matrices
HTML articles powered by AMS MathViewer
- by B. E. Rhoades
- Trans. Amer. Math. Soc. 196 (1974), 161-176
- DOI: https://doi.org/10.1090/S0002-9947-1974-0348565-1
- PDF | Request permission
Abstract:
Let E be a closed, bounded, convex subset of a Banach space $X,f:E \to E$. Consider the iteration scheme defined by ${\bar x_0} = {x_0} \in E,{\bar x_{n + 1}} = f({x_n}),{x_n} = \Sigma _{k = 0}^n{a_{nk}}{\bar x_k},\;n \geq 1$, where A is a regular weighted mean matrix. For particular spaces X and functions f we show that this iterative scheme converges to a fixed point of f.References
- Henry G. Barone, Limit points of sequences and their transforms by methods of summability, Duke Math. J. 5 (1939), 740–752. MR 1323
- F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl. 20 (1967), 197–228. MR 217658, DOI 10.1016/0022-247X(67)90085-6
- Ljubomir B. Ćirić, Generalized contractions and fixed-point theorems, Publ. Inst. Math. (Beograd) (N.S.) 12(26) (1971), 19–26. MR 309092
- W. G. Dotson Jr., On the Mann iterative process, Trans. Amer. Math. Soc. 149 (1970), 65–73. MR 257828, DOI 10.1090/S0002-9947-1970-0257828-6
- W. G. Dotson Jr. and W. Robert Mann, A generalized corollary of the Browder-Kirk fixed point theorem, Pacific J. Math. 26 (1968), 455–459. MR 236786, DOI 10.2140/pjm.1968.26.455
- R. L. Franks and R. P. Marzec, A theorem on mean-value iterations, Proc. Amer. Math. Soc. 30 (1971), 324–326. MR 280656, DOI 10.1090/S0002-9939-1971-0280656-9
- C. W. Groetsch, A note on segmenting Mann iterates, J. Math. Anal. Appl. 40 (1972), 369–372. MR 341204, DOI 10.1016/0022-247X(72)90056-X
- G. H. Hardy, Divergent Series, Oxford, at the Clarendon Press, 1949. MR 0030620 B. P. Hillam, Fixed point iterations and infinite matrices, and subsequential limit points of fixed point sets, Ph.D. Dissertation, University of California, Riverside, Calif., June, 1973.
- Gordon G. Johnson, Fixed points by mean value iterations, Proc. Amer. Math. Soc. 34 (1972), 193–194. MR 291918, DOI 10.1090/S0002-9939-1972-0291918-4
- R. Kannan, Some results on fixed points. III, Fund. Math. 70 (1971), no. 2, 169–177. MR 283649, DOI 10.4064/fm-70-2-169-177
- R. Kannan, Construction of fixed points of a class of nonlinear mappings, J. Math. Anal. Appl. 41 (1973), 430–438. MR 320837, DOI 10.1016/0022-247X(73)90218-7
- W. Robert Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506–510. MR 54846, DOI 10.1090/S0002-9939-1953-0054846-3
- Curtis L. Outlaw, Mean value iteration of nonexpansive mappings in a Banach space, Pacific J. Math. 30 (1969), 747–750. MR 247542, DOI 10.2140/pjm.1969.30.747
- Curtis Outlaw and C. W. Groetsch, Averaging iteration in a Banach space, Bull. Amer. Math. Soc. 75 (1969), 430–432. MR 239478, DOI 10.1090/S0002-9904-1969-12207-X
- J. Reinermann, Über Toeplitzsche Iterationsverfahren und einige ihrer Anwendungen in der konstruktiven Fixpunkttheorie, Studia Math. 32 (1969), 209–227 (German). MR 303371, DOI 10.4064/sm-32-3-209-227
- Jochen Reinermann, Über Fixpunkte kontrahierender Abbildungen und schwach konvergente Toeplitz-Verfahren, Arch. Math. (Basel) 20 (1969), 59–64 (German). MR 276843, DOI 10.1007/BF01898992 B. E. Rhoades, Fixed point iterations using infinite matrices, Preliminary report, Notices Amer. Math. Soc. 19 (1972), A-516. Abstract #72T-B142. B. E. Rhoades, A comparison of various definitions of contractive mappings (in preparation). J. Schauder, Der Fixpunktsatz in Functionräumen, Studia Math. 2 (1930), 171-180.
- Tudor Zamfirescu, Fix point theorems in metric spaces, Arch. Math. (Basel) 23 (1972), 292–298. MR 310859, DOI 10.1007/BF01304884
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 196 (1974), 161-176
- MSC: Primary 47H10; Secondary 65J05
- DOI: https://doi.org/10.1090/S0002-9947-1974-0348565-1
- MathSciNet review: 0348565