On the zeros of Dirichlet $L$-functions. I
HTML articles powered by AMS MathViewer
- by Akio Fujii
- Trans. Amer. Math. Soc. 196 (1974), 225-235
- DOI: https://doi.org/10.1090/S0002-9947-1974-0349603-2
- PDF | Request permission
Abstract:
A mean value theorem for $\arg L(1/2 + i(t + h), \chi ) - \arg L(1/2 + it, \chi )$ is established. This yields mean estimates for the number of zeros of $L(s, \chi )$ in small boxes.References
- A. F. Lavrik, The approximate functional equation for Dirichlet $L$-functions, Trudy Moskov. Mat. ObÅ¡Ä. 18 (1968), 91â104 (Russian). MR 0236126
- Atle Selberg, Contributions to the theory of the Riemann zeta-function, Arch. Math. Naturvid. 48 (1946), no. 5, 89â155. MR 20594
- Atle Selberg, Contributions to the theory of Dirichletâs $L$-functions, Skr. Norske Vid.-Akad. Oslo I 1946 (1946), no. 3, 62. MR 22872
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 196 (1974), 225-235
- MSC: Primary 10H10
- DOI: https://doi.org/10.1090/S0002-9947-1974-0349603-2
- MathSciNet review: 0349603