Global dimension of tiled orders over a discrete valuation ring
HTML articles powered by AMS MathViewer
- by Vasanti A. Jategaonkar
- Trans. Amer. Math. Soc. 196 (1974), 313-330
- DOI: https://doi.org/10.1090/S0002-9947-1974-0349729-3
- PDF | Request permission
Abstract:
Let R be a discrete valuation ring with maximal ideal $\mathfrak {m}$ and the quotient field K. Let $\Lambda = ({\mathfrak {m}^{{\lambda _{ij}}}}) \subseteq {M_n}(K)$ be a tiled R-order, where ${\lambda _{ij}} \in {\mathbf {Z}}$ and ${\lambda _{ii}} = 0$ for $1 \leq i \leq n$. The following results are proved. Theorem 1. There are, up to conjugation, only finitely many tiled R-orders in ${M_n}(K)$ of finite global dimension. Theorem 2. Tiled R-orders in ${M_n}(K)$ of finite global dimension satisfy DCC. Theorem 3. Let $\Lambda \subseteq {M_n}(R)$ and let $\Gamma$ be obtained from $\Lambda$ by replacing the entries above the main diagonal by arbitrary entries from R. If $\Gamma$ is a ring and if gl $\dim \;\Lambda < \infty$, then gl $\dim \;\Gamma < \infty$. Theorem 4. Let $\Lambda$ be a tiled R-order in ${M_4}(K)$. Then gl $\dim \;\Lambda < \infty$ if and only if $\Lambda$ is conjugate to a triangular tiled R-order of finite global dimension or is conjugate to the tiled R-order $\Gamma = ({\mathfrak {m}^{{\lambda _{ij}}}}) \subseteq {M_4}(R)$, where ${\gamma _{ii}} = {\gamma _{1i}} = 0$ for all i, and ${\gamma _{ij}} = 1$ otherwise.References
- Maurice Auslander and Oscar Goldman, Maximal orders, Trans. Amer. Math. Soc. 97 (1960), 1–24. MR 117252, DOI 10.1090/S0002-9947-1960-0117252-7
- N. Bourbaki, Éléments de mathématique. Première partie. Fascicule VI. Livre II: Algèbre. Chapitre 2: Algèbre linéaire, Actualités Sci. Indust., No. 1236, Hermann, Paris, 1962 (French). Troisième édition, entièrement refondue. MR 0155831
- Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0144979
- K. L. Fields, Examples of orders over discrete valuation rings, Math. Z. 111 (1969), 126–130. MR 246913, DOI 10.1007/BF01111193
- Vasanti A. Jategaonkar, Global dimension of triangular orders over a discrete valuation ring, Proc. Amer. Math. Soc. 38 (1973), 8–14. MR 309988, DOI 10.1090/S0002-9939-1973-0309988-4 —, Global dimension of tiled orders over a DVR, Notices Amer. Math. Soc. 19 (1972), A-299. Abstract #72T-A66.
- Vasanti A. Jategaonkar, Global dimension of tiled orders over commutative noetherian domains, Trans. Amer. Math. Soc. 190 (1974), 357–374. MR 354754, DOI 10.1090/S0002-9947-1974-0354754-2
- Irving Kaplansky, Fields and rings, University of Chicago Press, Chicago, Ill.-London, 1969. MR 0269449
- Joachim Lambek, Lectures on rings and modules, Blaisdell Publishing Co. [Ginn and Co.], Waltham, Mass.-Toronto, Ont.-London, 1966. With an appendix by Ian G. Connell. MR 0206032
- Bruno J. Mueller, On semi-perfect rings, Illinois J. Math. 14 (1970), 464–467. MR 262299 R. B. Tarsey, Orders, Thesis, The University of Chicago, Chicago, Ill. 1969.
- Richard B. Tarsy, Global dimension of orders, Trans. Amer. Math. Soc. 151 (1970), 335–340. MR 268226, DOI 10.1090/S0002-9947-1970-0268226-3
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 196 (1974), 313-330
- MSC: Primary 16A18
- DOI: https://doi.org/10.1090/S0002-9947-1974-0349729-3
- MathSciNet review: 0349729