The inertial aspects of Stein’s condition $H-C^{\ast }\ HC\gg O$
HTML articles powered by AMS MathViewer
- by Bryan E. Cain
- Trans. Amer. Math. Soc. 196 (1974), 79-91
- DOI: https://doi.org/10.1090/S0002-9947-1974-0350449-X
- PDF | Request permission
Abstract:
To each bounded operator C on the complex Hilbert space $\mathcal {H}$ we associate the vector space ${\mathcal {K}_C}$ consisting of those $x \in \mathcal {H}$ for which ${C^n}x \to 0$ as $n \to \infty$. We let $\alpha (C)$ denote the dimension of the closure of ${\mathcal {K}_C}$ and we set $\beta (C) = \dim (\mathcal {K}_C^ \bot )$. Our main theorem states that if H is Hermitian and if $H - {C^ \ast }HC$ is positive and invertible then $\alpha (C) \leq \pi (H),\beta (C) = \nu (H)$, and $\beta (C) \geq \delta (H)$ where $(\pi (H),\nu (H),\delta (H))$ is the inertia of H. (That is, $\pi (H) = \dim \;({\text {Range}}\;E[(0,\infty )])$) where E is the spectral measure of H; $\nu (H) = \pi ( - H)$; and $\delta (H) = \dim ({\operatorname {Ker}}\;H)$.) We also show (l) that in general no stronger conclusion is possible, (2) that, unlike previous inertia theorems, our theorem allows 1 to lie in $\sigma (C)$, the spectrum of C, and (3) that the main inertial results associated with the hypothesis that $\operatorname {Re} (HA)$ is positive and invertible can be derived from our theorem. Our theorems (1) characterize C in the extreme cases that either $\pi (H) = 0$ or $\nu (H) = 0$, and (2) prove that $\alpha (C) = \pi (H),\beta (C) = \nu (H),\delta (H) = 0$ if either $1 \notin \sigma (C)$ or $\beta (C) < \infty$.References
- Bryan E. Cain, An inertia theory for operators on a Hilbert space, J. Math. Anal. Appl. 41 (1973), 97–114. MR 317089, DOI 10.1016/0022-247X(73)90183-2
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523 —, Linear operators. II: Spectral theory. Selfadjoint operators in Hilbert space, Interscience, New York, 1963. MR 32 #6181.
- Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
- Alexander Ostrowski and Hans Schneider, Some theorems on the inertia of general matrices, J. Math. Anal. Appl. 4 (1962), 72–84. MR 142555, DOI 10.1016/0022-247X(62)90030-6
- Frigyes Riesz and Béla Sz.-Nagy, Functional analysis, Frederick Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron. MR 0071727
- Olga Taussky, A generalization of a theorem of Lyapunov, J. Soc. Indust. Appl. Math. 9 (1961), 640–643. MR 133336, DOI 10.1137/0109053
- Olga Taussky, Matrices $C$ with $C^{n}\rightarrow 0$, J. Algebra 1 (1964), 5–10. MR 161865, DOI 10.1016/0021-8693(64)90003-1
- James P. Williams, Similarity and the numerical range, J. Math. Anal. Appl. 26 (1969), 307–314. MR 240664, DOI 10.1016/0022-247X(69)90154-1
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 196 (1974), 79-91
- MSC: Primary 47A10
- DOI: https://doi.org/10.1090/S0002-9947-1974-0350449-X
- MathSciNet review: 0350449