## The inertial aspects of Stein’s condition $H-C^{\ast }\ HC\gg O$

HTML articles powered by AMS MathViewer

- by Bryan E. Cain
- Trans. Amer. Math. Soc.
**196**(1974), 79-91 - DOI: https://doi.org/10.1090/S0002-9947-1974-0350449-X
- PDF | Request permission

## Abstract:

To each bounded operator*C*on the complex Hilbert space $\mathcal {H}$ we associate the vector space ${\mathcal {K}_C}$ consisting of those $x \in \mathcal {H}$ for which ${C^n}x \to 0$ as $n \to \infty$. We let $\alpha (C)$ denote the dimension of the closure of ${\mathcal {K}_C}$ and we set $\beta (C) = \dim (\mathcal {K}_C^ \bot )$. Our main theorem states that if

*H*is Hermitian and if $H - {C^ \ast }HC$ is positive and invertible then $\alpha (C) \leq \pi (H),\beta (C) = \nu (H)$, and $\beta (C) \geq \delta (H)$ where $(\pi (H),\nu (H),\delta (H))$ is the inertia of

*H*. (That is, $\pi (H) = \dim \;({\text {Range}}\;E[(0,\infty )])$) where

*E*is the spectral measure of

*H*; $\nu (H) = \pi ( - H)$; and $\delta (H) = \dim ({\operatorname {Ker}}\;H)$.) We also show (l) that in general no stronger conclusion is possible, (2) that, unlike previous inertia theorems, our theorem allows 1 to lie in $\sigma (C)$, the spectrum of

*C*, and (3) that the main inertial results associated with the hypothesis that $\operatorname {Re} (HA)$ is positive and invertible can be derived from our theorem. Our theorems (1) characterize

*C*in the extreme cases that either $\pi (H) = 0$ or $\nu (H) = 0$, and (2) prove that $\alpha (C) = \pi (H),\beta (C) = \nu (H),\delta (H) = 0$ if either $1 \notin \sigma (C)$ or $\beta (C) < \infty$.

## References

- Bryan E. Cain,
*An inertia theory for operators on a Hilbert space*, J. Math. Anal. Appl.**41**(1973), 97–114. MR**317089**, DOI 10.1016/0022-247X(73)90183-2 - Nelson Dunford and Jacob T. Schwartz,
*Linear Operators. I. General Theory*, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR**0117523**
—, - Tosio Kato,
*Perturbation theory for linear operators*, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR**0203473** - Alexander Ostrowski and Hans Schneider,
*Some theorems on the inertia of general matrices*, J. Math. Anal. Appl.**4**(1962), 72–84. MR**142555**, DOI 10.1016/0022-247X(62)90030-6 - Frigyes Riesz and Béla Sz.-Nagy,
*Functional analysis*, Frederick Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron. MR**0071727** - Olga Taussky,
*A generalization of a theorem of Lyapunov*, J. Soc. Indust. Appl. Math.**9**(1961), 640–643. MR**133336**, DOI 10.1137/0109053 - Olga Taussky,
*Matrices $C$ with $C^{n}\rightarrow 0$*, J. Algebra**1**(1964), 5–10. MR**161865**, DOI 10.1016/0021-8693(64)90003-1 - James P. Williams,
*Similarity and the numerical range*, J. Math. Anal. Appl.**26**(1969), 307–314. MR**240664**, DOI 10.1016/0022-247X(69)90154-1

*Linear operators*. II:

*Spectral theory. Selfadjoint operators in Hilbert space*, Interscience, New York, 1963. MR

**32**#6181.

## Bibliographic Information

- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**196**(1974), 79-91 - MSC: Primary 47A10
- DOI: https://doi.org/10.1090/S0002-9947-1974-0350449-X
- MathSciNet review: 0350449