Symplectic homogeneous spaces
HTML articles powered by AMS MathViewer
- by Bon Yao Chu
- Trans. Amer. Math. Soc. 197 (1974), 145-159
- DOI: https://doi.org/10.1090/S0002-9947-1974-0342642-7
- PDF | Request permission
Abstract:
It is proved in this paper that for a given simply connected Lie group G with Lie algebra $\mathfrak {g}$, every left-invariant closed 2-form induces a symplectic homogeneous space. This fact generalizes the results in [7] and [12] that if ${H^1}(\mathfrak {g}) = {H^2}(\mathfrak {g}) = 0$, then the most general symplectic homogeneous space covers an orbit in the dual of the Lie algebra $\mathfrak {g}$. A one-to-one correspondence can be established between the orbit space of equivalent classes of 2-cocycles of a given Lie algebra and the set of equivalent classes of simply connected symplectic homogeneous spaces of the Lie group. Lie groups with left-invariant symplectic structure cannot be semisimple; hence such groups of dimension four have to be solvable, and connected unimodular groups with left-invariant symplectic structure are solvable [4].References
- Claude Chevalley, Theory of Lie groups. I, Princeton University Press, Princeton, N. J., 1946 1957. MR 0082628, DOI 10.1515/9781400883851 —, Théorie des groupes de Lie. II. Groupes algèbres. Actualités Sci. Indust., no. 1152, Hermann, Paris, 1951. MR 14, 448.
- Claude Chevalley and Samuel Eilenberg, Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc. 63 (1948), 85–124. MR 24908, DOI 10.1090/S0002-9947-1948-0024908-8
- Jun-ichi Hano, On Kaehlerian homogeneous spaces of unimodular Lie groups, Amer. J. Math. 79 (1957), 885–900. MR 95979, DOI 10.2307/2372440
- G. Hochschild, The structure of Lie groups, Holden-Day, Inc., San Francisco-London-Amsterdam, 1965. MR 0207883
- Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol I, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1963. MR 0152974
- Bertram Kostant, Quantization and unitary representations. I. Prequantization, Lectures in Modern Analysis and Applications, III, Lecture Notes in Mathematics, Vol. 170, Springer, Berlin, 1970, pp. 87–208. MR 0294568 Yozo Matsushima, Differential geometry, Dekker, New York, 1972.
- Richard S. Palais, A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc. 22 (1957), iii+123. MR 121424
- L. S. Pontryagin, Topological groups, Gordon and Breach Science Publishers, Inc., New York-London-Paris, 1966. Translated from the second Russian edition by Arlen Brown. MR 0201557
- Shlomo Sternberg, Lectures on differential geometry, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0193578
- J.-M. Souriau, Structure des systèmes dynamiques, Dunod, Paris, 1970 (French). Maîtrises de mathématiques. MR 0260238
- È. B. Vinberg, The theory of homogeneous convex cones, Trudy Moskov. Mat. Obšč. 12 (1963), 303–358 (Russian). MR 0158414
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 197 (1974), 145-159
- MSC: Primary 22E15; Secondary 53C30, 57F99
- DOI: https://doi.org/10.1090/S0002-9947-1974-0342642-7
- MathSciNet review: 0342642