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POLY ANALYTIC FUNCTIONS WITH EXCEPTIONAL VALUES

BY

P. KRAJKIEWICZ

ABSTRACT.    Let f(z) = X£_0 =*4(2) where the functions fQ,fy, ••• , /

are analytic on some annular neighborhood A   of the point °o and /   = 1  on A

and ~z denotes the complex conjugate of z.  If / does not vanish on A  it is

shown that the functions /„,/.,•••,/     .  have a nonessential isolated singu-

larity at the point infinity.

1. Introduction.  If Y denotes the finite complex plane, a function /: T —> Y

is said to be polyentire or (n + l) entire if and only if there exist (n + l) > 1 en-

tire functions fQ, fy, •", f    such that f(z) = fQ(z) + z/j(z) + z2f2(z) + ... +

z"f (z)  for all z e r, where z   denotes the complex conjugate of z.  A function

/ is said to be bientire if and only if /is (n + l) entire with n = 1. More gen-

erally if A   is any nonempty subset of T, a function f: A —► Y is said to be

polyanalytic on A  or (n + l) analytic on A  if and only if there exist (n + l) >  1

functions /„, /,»•••»/    analytic on A  such that

n

(l.i) /(*)=£**/*(*)•
fe = 0

for all z e A, where z denotes the complex conjugate of z.  A function / is said

to be bianalytic on  A  if and only if /is (72 + l)  analytic on A  with n = 1.

Now let / be polyanalytic on some nonempty subset A of T and let z    be

an arbitrary complex number, finite or infinite.  Then the point zQ is said to be an

isolated singularity of / if and only if there is some neighborhood  N of z    so

that N - (z0 t Ç A.

We now need the following uniqueness result.

Lemma (1.1).  // / is polyanalytic on a nonempty open subset G of Y and if

f is represented on G by equation (1.1), then the functions /., /,»•••,/    in

equation (1.1) are uniquely determined on G by f.

Proof.  It suffices to show that if / s 0 on G, then /, = 0 on G fot k =

0, 1, -..,«. If we introduce the operator d/dz = l/2(d/dx+ id/By), it is easy to see that
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dz
(z)=  Zkz*-lfh(z\

fe=0

for z £ G. If / = 0 on G, it then follows that dkj/dzk = 0 on G for k = 0, 1,"•, n.

From these (n + l) > 1 equations we deduce that /, = 0 on G for & = 0, !,•••, tz.

This proves the result.

In view of the above uniqueness result, the following definitions are not

ambiguous. Let / be a polyanalytic function with an isolated singularity at point

z_. Then there is some neighborhood N of z    so that / is represented on N -

\zA by (1.1). This representation is unique and the functions /., /,»•••»/    in

(1.1) all have an isolated singularity at the point z . The point z    is said to be

an essential isolated singularity of / if and only if the point z. is an essential

isolated singularity of at least one of the functions fQ, fx, • • •, / . The point zQ

is said to be a nonessential isolated singularity of / if and only if the point z

is a nonessential isolated singularity of every one of the functions f0, f,,< ••, f .

Next let / be a polyanalytic function with an isolated singularity at a point

z    and let a be a finite complex number. Then a is said to be an exceptional

value for / and z    it and only if there is some neighborhood N oí z    so that

/ — a never vanishes on N — {zA.

In [l], M. B. Balk undertook the study of polyentire functions which admit an

exceptional value at the point infinity. The author, by utilizing H. Cartan's theory

of meromorphic curves [3], succeeded, in a long and complicated argument, in

establishing the following elegant result.

If / is a polyentire function which admits the exceptional value zero at the

point infinity, then there exists an entire function h and a polynomial Piz, z)

in z and z such that

f(z) = eHz)Piz, z),    tor all z £ Y.

Subsequently in [6], the author, by a rather elementary argument utilizing the

theory of quasinormal families of analytic functions, obtained a similar charac-

terization of bianalytic functions which admit the exceptional value zero at an

isolated singularity, finite or infinite.

The results cited above in [l] and [6] suggest a study of polyanalytic func-

tions which admit an exceptional value at an isolated singularity.

Before stating our main result, it will be convenient to introduce the following

notation. Let 0 < R < + 00 and let z    be an arbitrary complex number, finite or

infinite. We now define Aiz , R) as follows. If zQ is finite, we define AizQ, R.)

to be the set of all finite complex numbers z such that 0 < \z — z J < R. If z.

is infinite, we define Aiz , R) to be the set of all finite complex numbers z such
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that  l/R < \z\ < +00. Note that A(zQ, +00) = Y - {zA.  Also   A(zQ, R) = Y if and

only if z   = 00 and R - +<».

With the aid of the above notation we can now state our main result in the

following form.

Theorem (1.1).  Let f be polyanalytic on A(oo, R) and represented on

A(oo, R.) by means of equation (1.1) where f   = I on A(°o, R), If f admits the

exceptional value zero at the point infinity, then the ¡unctions /„,/,,•••,/     .

have a nonessential isolated singularity at the point infinity.

First we mention some immediate consequences of Theorem (1.1).

We now need the following result [6].

Lemma (1.2).  Let f be polyanalytic on A(oo, R) and represented on

A(oo, R) by means of equation (1.1) where f   4 0 on A(oa, R),  If f admits the

exceptional value zero at the point infinity, then the function f    also admits the

exceptional value zero at the point infinity.

From Theorem (1.1) and Lemma (1.2) we have the following result.

Corollary (1.1).  Let f be polyanalytic on A(oo, R) and represented on

A(oo, R) by means of equation (1.1) where f   4 0 on A(oo, R), If f admits the

exceptional value zero at the point infinity, then f    admits the exceptional value

zero at the point infinity and the functions j /f , /,//»•••»/     ,//    have a non-

essential isolated singularity at the point infinity.

We next make a preliminary observation. Let / be polyanalytic on A(z , R)

with an essential isolated singularity at the point z    and suppose that / is

represented on A(z , R.) by means of equation (1.1) where  f   4 0 on A(z„, R). If

the point zQ is finite, then g(z) -f(z + zQ) is polyanalytic on A(0, R.) with an

essential singularity at the point zero. If the point z    is zero,, then g(z) =

z"f(l/z) is polyanalytic on A(°o, R) with an essential singularity at the point

infinity.

From Corollary (1.1) and the above observation we obtain the following result.

Corollary (1.2).  Let f be polyanalytic on A(z , R) and represented on

A(zQ, R) by means of equation (1.1) and suppose that f admits the exceptional

value zero at the point z .  // ; = 0, 1,« • •, «  is such that f.40 on A(z , R)

then the ¡unction j. admits the exceptional value zero at the point z    and for

z = 0, 1, • • •, n the ¡unctions /.//. have a nonessential isolated singularity at

the point z .

Next from Corollary (1.2) we obtain the following representation for poly-

analytic functions which admit an exceptional value at an isolated singularity.
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Corollary (1.3).   Let f be polyanalytic on Aiz , R) and admit the exceptional

value zero at the point z      Then there exists a function h analytic and never

zero on Aiz , R) and there exists a function g polyanalytic on Aiz., R) with a

nonessential singularity at the point z    such that fiz) = hiz)giz), for all

z£Aiz0, R).

It should be noted, in view of Lemmas (1.1) and (1.2), that Theorem (1.1)

and Corollaries (1.1), (1.2), and (1.3) are actually equivalent statements.

At this point we give a brief indication of how we propose to establish our

main result, Theorem (1.1).  In [l], M. B. Balk established his result by applying

H. Cartan's theory of meromorphic curves [3] to certain linear combinations of

entire functions.  If we attempted to establish a proof of Theorem (1.1) by follow-

ing the procedures utilized by M. B. Balk in [l], we would be dealing with certain

linear combinations of functions analytic on an annular neighborhood of a point,

for which H. Cartan's theory of meromorphic curves does not apply. However this

difficulty can be overcome. In §2 we discuss some results concerning functions

meromorphic on an annulus.  In particular we provide enough details to indicate

how the Nevanlinna theory of meromorphic functions can be extended to a similar

theory of functions meromorphic on an annulus or, and this -is the case of par-

ticular interest to us, on an annular neighborhood of a point.  On the basis of the

results in §2, it is easy to see how H. Cartan's theory of meromorphic curves

[3] can be extended to an analogous theory concerning linear combinations of

functions meromorphic on an annulus or an annular neighborhood of a point.  In

§3 we develop enough of this theory for a certain special case so as to lead to a

proof of our main result, Theorem (1.1).  Our proof then follows in broad outline

the argument utilized by M. B. Balk in [l].

In §4 we offer some simple applications of Theorem (1.1).  In particular we

offer a new proof of the big Picard theorem for polyanalytic functions, a result

which was derived by other means in [2]„

2. Functions meromorphic on an annulus. In this section we will consider

some results concerning functions meromorphic on an annulus. In particular we

will briefly indicate how the Nevanlinna theory of meromorphic functions can be

extended to a similar theory for functions meromorphic on an annulus and for

functions meromorphic on an annular neighborhood of a point.

It will be convenient to introduce the following definitions. First if / is any

finite complex valued function which is continuous and never zero on the circum-

ference  |z| = p > 0, we define A   arg / to be the change in the argument of /

along the positively oriented circumference  |z| = p.

We also introduce the so-called log plus function log   x defined for 0 <

x < +oe by the condition that   log   x = 0 if 0 < x < 1 and log* x= log x ¡f 1 <x <+oo.



POLYANALYTIC FUNCTIONS WITH EXCEPTIONAL VALUES 185

Now let 0 < RQ < Ry < + °° be fixed and let / be meromorphic on RQ < |z| < R,

such that f(z) 4 0, °° for  |z| = RQ. In the discussion to follow we shall frequently

be considering integrals of the form

(2.1) f ff G(\l(Rei6)\)dd,
¿n J 0

for Rfí < R < R ., where G(x) is some real finite valued function defined and con-

tinuous on 0<x<+oo. If R   < R< R    is such that / has zeros or poles on

|z| = R, then the question arises as to whether the integral in (2.1) exists as an

improper integral. If we grant that this integral exists for all RQ < R < R, as a

proper or an improper integral, then the further question arises as to whether this

integral is a continuous function of R on RQ<R<R. In this regard, the follow-

ing observation will prove to be quite useful.

Lemma (2. 1).  Suppose there is some positive constant K so that

\G(x) - G(y)\ < X I log x - log y|     for 0 < x, y < +00.

Then for each RQ< R < R. such that f has zeros or poles on \z\ = R, the integral in

(2.1) exists as an improper integral.  Also the integral in (2.1) is a continuous

junction of R on RQ < R < R..

We omit the proof of the above result since  it is straightforward and involves

only routine estimates.

We now need the following result.

Theorem (2.1).  Let 0<Rn<R.<+°o  be fixed and let f be meromorphic on

R. < |z| < R    and suppose further that f(z) 4 0, 00 for \z\ = RQ.  Let a , a., • • •

be the zeros and let by, b2, • • •   be the poles of f on R. < | z| < R      with due

regard for multiplicities.  Then for all R   < R < R    we have that

fjriog|/(R^)U^¿iog+^-£log^
(2>2) M=l 'V       M=l 'V

+ fX l°* l/(*o'ie)\* + h A«0 "S/ log I

where the integral on the left-band side of (2.2) is understood to be improper in

case f has zeros or poles on \z\ = R.

Proof. It suffices to consider the case when R.  is finite and / is mero-

morphic on RQ < Iz| < R j. Let a y, a2,..., a    be the zeros and let b,, b 2, • • •,b

be the poles of / on RQ < |z| < R     counting multiplicities. Now the Maclaurin

series for log(l - z) has radius of convergence one, and by Abel's theorem this

series is uniformly convergent on every closed subset of the circumference  |z| = 1
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which does not contain the point one [8, pp. 134—136]. Hence it is easy to see

that

¿J^log|l-reie|JÔ = log+r,

for all 0 < r < +oo, the above integral being understood to be improper when

r = 1. Consequently,

(2.3) ±  f2" log\a - bei0\d6 = log\a\+log* \b/a\,
2t7 J u

for all finite complex numbers a and b with a 4 0. Now there is a function g

meromorphic on RQ < |z| < Rj with giz) 4 Q, °° for R. < |z| < R    such that

for all R0 < |z| < R v From (2.3), (2.4) we deduce that

¿T ÍT log \f(Reie)\ dd - ¿ J277 log \fiRQe^)\ dd

n m

(2.5) = E log^ - £ Wff&fi \og\giRe«)\d6
M=l IV      /i=i !>'

for all RQ<R<R j. Now for R0 < R < R  , it is easy to see that

RÍrTuST l0^(Re,e)l * = ¿ A« "" - ¿ A*o »« « = ¿ A*o «« /■

It therefore follows that

(2.6)   ¿ Jf log |g(Re¿e) |* - ¿ Jf log |g(Roe¿e) \dd - ¿ ARo arg / log A,

for R0<R<Ry  From (2.5), (2.6) we obtain (2.2). This proves the result.

The above proof although somewhat long has the merit of being elementary. If

we take for granted the fact that the integral on the left-hand side of (2.2) always

exists as a proper or an improper integral and that this integral is a continuous

function of R on  R Q< R < R., and this can be established directly by elementary

estimates or from Lemma (2.1), then a short proof of Theorem (2.1) can be achieved

by utilizing Green's theorem as in [7, pp. 164—165].

It should be noted in passing that from (2.2) or (2.5) it follows that the inte-

gral on the left-hand side of (2.2) is a continuous function of R on RQ< R < Rx.
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The identity in (2.2) is of course an analogue of Jensen's integral formula

for functions meromorphic on a disk. The identity in (2.2) will be referred to as

Jensen's integral formula for functions meromorphic on an annulus or more simply

as Jensen's integral formula for an annulus.

Note that if we let RQ  approach zero in (2.2) we then obtain Jensen's inte-

gral formula for a disk.

Following Nevanlinna we proceed to rewrite Jensen's integral formula for an

annulus. From Lemma (2.1) and the inequality |log  x — log  y| < |log x - log y|

which is valid for 0 < x, y < +oo we see that the integral Vm~ï f2nlog+\f(Rei&)\ d9

exists as an improper integral in case / has poles on |z| = R and we also see

that this integral is a continuous function of  R on RQ < R < R,. From the identity

log x - log    x — log  (lA), we see that (2.2) can be written in the more sym-

metrical form

(2.7)

ïjT1««* !/<*«"> l^+ZVífí

1   f     Vn JO       6
1

f(Rc
d6 + Z losrS

+  R

p-=\

+ ¿ J0    logl/(Vffl>l* + ¿ \o »8 /l0«F'

for R0 <R <Rj.

In order to make the symmetry of (2.7) more evident still we make the fol-

lowing definitions. Assume the hypothesis of Theorem (2.1). Then for RQ < R <

Ry, we let

(2.8)

m(R, f) = m(R, f, ~) = ± j27T \og + \f(Reie)\ d9,

m(R, l/f) = zzz(R, /, 0) = A. J27r iog +
f(Reie)

d9.

The expression z?2(R, /) is called the proximity function of / and is evidently

a continuous function of R on RQ<R<R.. Also for RQ<R<Ry we define

N(R, R0, /) = N(R, f) = N(R, RQ, f, ■*,) = N(R, f, oo) and N(R, Rn, l/f)

N(R, l/f) = N(R, R0, /, 0) = N(R, f, 0) by the condition that

(2.9) N(R,f)
M=l IVI

N(R, 1//)= £ log*   R

M=l
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The expression   /V(R, /)   is called the counting function for /.   Also for

RQ<R <RX, we let b(R, R0, /) = b(R, /) = b(R, Rq, /, ■») = b(R, /, oo) denote

the number of poles of /in R. < |z| < R, counting multiplicities, and we let

n(R, RQ, l/f) = b(R, l/j) = n(R, RQ, /, 0) = b(R, /, O) denote the number of zeros

of /in Rq < |z| < R, counting multiplicities. Note that

Mr, /)=[i ^dt,  n(r, i/f) = r é¿M
J Rq      t J Rq        t

(2.10) dt,

for R0 <R <Rj.

(2.11)

From the above definitions we see that (2.7) can be written as

m(R, f) + MR, /) = 77i(R ,1/f) + MR ,1//)

+ ¿ ÍT log l/CV¿e)l M + ¿ ARo arg / log 1,

for R0<R <RV

Again, assuming the hypothesis of Theorem (2.1), we define TÍR, R., /) =

TiR, f) by the condition that

(2.12) TiR, f) = miR, f) + NiR,f),

for RQ<R < R.. The expression TiR, f) is called the characteristic function of

/ and is evidently a continuous function of R on RQ < R < R..

From (2.11), (2.12) we obtain the following formulation of Jensen's integral

formula for an annulus.

Theorem (2.2).  Assume the hypothesis of Theorem (2.1).   Then for RQ < R < Rj

we have that

(2.13)     TiR, f) = TiR, l/f) + ¿ ¡'J log |/(Roe,ö)| dd + ± ARq arg / log f-

Note that if we let RQ approach zero in (2.13). we obtain Nevanlinna's form

of Jensen's integral formula for functions meromorphic on a disk.

From the inequalities

(2.14)      log +

M=l

< £ log+ \aß\,      log+

M=l

P

M=l M=l

we easily deduce that

(2.15)       771 (R,  n/J<E rniR, fß),       mlR,  ¿ f A < ¿ «(R, /^) + log p.
\      M=l     /       M=l \      M=l     /      M=l
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n(r. £/J< £"<«./,>

Also

(2.16) n(r, n/j<£/V(R,/M),

It therefore follows that

(2.17)   tIr, nf\<iz T(R, fß\   tIr, s /j < 2:T(R' fp)+l08 ?•
\      M=l     /       M=l \      A=l      /       M=l

In particular we see that

|T(R, /)-7tR, f-a)\ <log+|a| + log 2,

for any finite complex number a.

Now from Theorem (2.2) and the above inequality we deduce the first

fundamental theorem for functions meromorphic on an annulus.

Theorem (2.3). Assume the hypothesis of Theorem (2.1).  Let a be any finite

complex number such that f(z) 4 a for \z\ = R_.  Then for all R   < R < R    we

have that

t(r, -L-) = T(R, /)- ¿if log \f(R0e)id- a| de

(2.18)

-J-A..,   arg(/-a)log ■£ + da, R, /),
2rr     R0 ° R0

where \e(a, R, f)\ < log + |a| + log 2.

As a simple consequence of Theorem (2.3) we mention the following result

which we shall utilize later.

Corollary (2.1).  Let f be meromorphic on 0 < R„ < |z| < +co.  Suppose there

is an increasing sequence {R .], j = 1, 2, • • •, of real numbers greater than R.

azza" diverging to +oo so that T(R ., f) < A log R ., for j - 1, 2, • • •, where A  is

some positive constant.   Then j has only a finite number of poles on R    < |z| <

+ 00 azz^ / has a nonessential isolated singularity at the point infinity.

Again let 0 < R. < R . < + °° to be fixed and let / be a function meromorphic

on RQ < |z| < +oo with f(z) 4 O, o» for |z| = R.. Our next goal in this section is

to obtain a suitable estimate for m(R, f'If) in terms of log   T(R, f). We shall con-

sider only the case when R. = +oo. To achieve this goal we shall use a method

similiar to the differential geometric method utilized in [7, pp. 258—260].

Now let g(x) be a real finite valued function defined and continuous on

0 < x < +00 and suppose that g'(x) exists and is continuous on 0 < x < +oo. We
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now define Gix) for 0 < x < +00 by the condition that G'ix) = gix)/x.

We now need the following result.

Lemma (2.2). Let D be a domain in Y which is bounded by a finite system

of closed analytic curves y. Next suppose that f is a function meromorphic on D +

y such that fiz) 4 0, 00 for z on y.  Let n and m denote the number of zeros

and poles, respectively,   of f in D, counting multiplicities.   Then

(Z19>      ¿¿^¿»-¿//«'(l/DI/I'Vl' + ̂ o)-^-),
D

where we integrate along y in such a manner that the domain D remains at the

left as we traverse y, where s denotes arc length along y, and where d/dn de-

notes differentiation along the normal to y out of D.

Proof.  "Let z., z2,..., z    be the   distinct  points   of  D    at which

/   has   a   zero   or  a  pole.   For   k = 1, 2, ••• , p   let   z,    be  a   zero   of

/ of multiplicity mk > 1   or  a  pole   of /  of  multiplicity  (-mk)>l.   There

is   some  erg > 0 so that  for   0 < o < oQ  and  for  k = 1, 2, • • •, p

the disks D, = Diz,, a) with center z.   and radius o are disjoint and contained

in D. For k = 1, 2,° • •, p let y, = yizk, o) be the boundary of D(z,, o)

oriented in the positive sense. For0<cr<O"n, let D=D—'2,D,, k=l,2,. + ',p.

Hence the boundary ya of D^ is given by ya= y + 2 y,, k = 1, 2, • • •, p.  From

Green's theorem we see that

6G(\f\)if  ^z/s = ¿JJag(|/|),
277 Jjrj     on 277 JJ

for 0 <o < o», where A = d /dx   + d /dy    is the Laplacian. It is easy to verify

that AG(|/|)=g'(|/|)|/|-1|/'|2. Consequently,

(,M>  ¿j;^*-¿ ¿j^*-¿jj.vw/1-w.
fc = l * Da-

ÍOt 0 < o < o0. On the other hand, for 0 < o < oQ and for k = 1, 2," •, p we see

that

_1.
277Jn^*=fX«*(^)*

whtiiie w,=z,+ oeiB. From the above identity we deduce that
"k'.k

dGi\f\)
lin.il     ^ü^s = Bifeg(j/(z,)|),
o-_n 2/7 ijk     on k k.
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for k = 1, 2,' • •, p.  From the above result and from (2.20) we obtain (2.19). This

establishes the result.

Note that the double integral in (2.19) is understood to be improper in the

sense indicated in the above proof.

For identities quite similar to the identity in (2.19) see [4] and [5, p. 10].

The identity in (2.19) leads to a variety of interesting and useful formulas

concerning meromorphic functions by suitably choosing D and g(x). We are

particularly interested in the case where D is an annulus.

Now let 0 < Rn < R. < +°o be fixed and let / be meromorphic on R. < |z| < R

such that /(z) 4 0, °° tot \z\ = Rn. As an immediate consequence of Lemma (2.2)

we have the following result.

Corollary (2.2). For all RQ<R< Ry such that f(z) 4 0, ~ for \z\ = R we

have that

■if2zrJ(

(2.21)

■2n     dG(\f(Reie)\)
o   R— -Jr.-dd

= IñSloST S'i\fireW)\)\fireiô)\-l\f(re^)\2rdrdd

f g(0)zz(R, /, 0) - g(oo)zz(R, /, oo)

Before we can utilize the identity in (2.21) we need some preliminary obser-

vations which we state as lemmas.

Lemma (2.3).  If RQ< R < Ry  is such that f has zeros or poles on \z\ =R,

then the integral in (2.1) exists as an improper integral. Moreover this integral is

a continuous ¡unction of R on R~ < R < R y.

Proof. There is some positive constant X so that |g(x)| < X for all 0 <

x <+oo. Now for 0 < x, y < +oo we have that G(x) - G(y) = fx(g(t)/t) dt. Hence

we see that \G(x) - G(y)\ < K |log x - log y| for 0 < x, y <+oo. The result now

follows from Lemma (2.1).

We also need the following result.

Lemma (2.4)o Suppose that g'(x) > 0 for all 0 < x < +oe. Then the double

integral in (2.21) is a continuous ¡unction of R on R.<R < R..

Proof. Denote this double integral by V(R) and let / denote the set of all

RQ<R<Ry such that f(z) 4 0,°o for \z\ = R.  Evidently V(R) is well defined,

continuous, and increasing on /.  Let  RQ< R2 < R y be such that / has zeros or
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poles on \z\ = R .. Now in order to show that V(R) may be defined at R = R2

in such a way that V(R) is continuous at R = R , it suffices to show that if

R0<R<R2<S <R1 then V(S) - V(R) -, 0   as R, S-, Rr In order to establish

this fact we proceed as follows. First there is some 0 < o. < R. - R,, R2 - R .

so that the only zeros or poles of /on R2 - oQ <\z\ < R   + o    are on the cir-

cumference \z\ = R2. Let z     z     • ■ • , z    be the distinct points on \z\ = R, at

which / has a zero or a pole. For k = 1, 2, •• •, p let z,   be a zero of / of mul-

tiplicity to, > 1 or a pole of / of multiplicity (—>".) > 1. Next there is some 0 <

o. < oQ so that for 0 < o < o^ and for k = 1, 2, • • •, p the disks D, = Diz,, a)

with center z,   and radius o, which are contained in the annulus R? —   c, <

\z\ <R2 +o0> are disjoint. For k = 1, 2,- • •, p let  y^ = yOsA» cr) denote the

boundary of D^ = Diz,, o) oriented in the positive sense. From Lemma (2.2) we

see that for 0 < o < o l  and k = 1, 2, • • • , p that

iJJg'(|/|)|/rM/'l2 = 2-i/7t^^-^(!/M)

hp;^f(-^/^^-^^k)\),277 JO     6   "        *   ' I    k fiw.)
\ *

where u/fc = zfc + o-e'9#   For 0 <cr <r/1 and k = 1, 2,.-., p let e(zfc, ff) denote

the double integral on D,   in the above equation. Clearly dz,, o) —, 0 as o —> 0

for k = 1, 2,' • ' , p.   Let ( > 0 be given.  There is some fixed 0 <r/- <ff,  so that

(iz,, o A < e/2p tor k = 1, 2, • • •, p.  There is some positive constant M so that

g'i\fiz)\)\ fiz^-^fiz)]2 < M for all R2 - oQ < \z\ < R 2 + oQ suchthat z 4

Dizk, o2) tot k= 1,2,." , p.  Thus if R2-oQ<R<R2<S<R2+oQ  we deduce

that 0 < ViS) - ViR) < f/2 + iS2 - R2)M/2. The result now follows from this

estimate.

We are now interested in using the identity in (2.21) when G(x)= (1 + log2*)1'2

so that gix) = log x/i 1 + log2 x)1'2 and ¿'(x) = x/(l + log2 x)3/2.

Now let 0 < RQ < +oo be fixed and let / be meromorphic on RQ < \z\ <+oowith

fiz) 4 0, oo for \z\ = RQ. For R>RQ we define  UÍR) = UÍR, f) by the condition

that

UiR) = ¿ ft" (1 + log2 \fiRei0)\)^2dd + MR, R0, /, 0)

(2.22) - MR, R0, A «) -¿ J7 (1 + log2 \fiR0eie)\)l/2dd
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In view of Lemma (2.3), the function U(R) is well defined and continuous

R>R0. Now let t = log R so that d/dt = Rd/dR.  From Corollary (2.2)

that if R> RQ is such that /(z) / 0,«> for |z| = R, then

on

we see

(2.23)
dU(R) _   1   fR   f2zr

dz

= j_ rR   r2

2z7 Jr0Jo

/'(re'e) raYatf

/(reíe) j    (1 + log2|/(re,e)|) 37T

From Lemma (2.4) we see that dU(R)/dtis continuous on R > Rn.  Further for all

R > R. such that /(z) 7^ 0, oo for |z| = R we see that

,, ,.v ¿Mr)   r2 r2*
(2-24) A2     -2zrJo

/'(Re'e)

/(Re!Öi (1 + log2|/(Re¿é?)|)3/2

We note that d U(R)/dt    exists and is continuous on R> RQ except possibly

for an isolated set of points.

We now wish to obtain an upper estimate for U(R) in terms of T(R, /). From

(2.8), (2.12), (2.13), (2.22) and the inequality (l + log2 x)1^2 < 1 + log+x +

log   (l/x)   which is valid for 0 < x < +00 we see that

U(R) < 1 + 2T(R, /) - ± ARo arg / log |-

,     1J. f^ log|(.y")| J       i0 fiR0eie)

108 R0 2zz J 0   (Jl l0g2|/(Rne^)|)T72   ^K0e     -f(RQeie)f

- ¿ fi" log \((R0e^)\ d9 - ¿ JJ»(1 + log2 l/ÍRoe^D1/2 «

< 1 + 2T(R, /) - log ̂  Jo   Í._,-_-ppn + y

atf

.%Le*^%6
\ °     /(V*>/

<l + 2T(R,/) + 2R0log|-¿/(

|/W*>

/'(Rne¿0)

/(Rne¿0)
de

1   C2n
<l + 2T(R,/)+2R¿^

/(Rne'e)
do.

for all R>RQ-

Hence we see that
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(2.25)   log +UiR) < log +TiR, f) + log +R + -1-  f
¿TT  J

f'(R0eie)

f(R,
d6+ 4 log 2,

for all R>RQ>

We next wish to obtain a suitable upper estimate for 77z(R, /'//) in terms of

d UiR)/dt . To do this it will be convenient to introduce the plus function x

defined for 0 < x < +oo by the condition that x   = lifO<x<l and x   = x if

1 < x < +00. Equivalently we could have defined x    by the condition that x   =

e   8 *for 0 < x < +00. The plus function x    enjoys many pleasant properties just

as the log plus function log  x does. From (2.24) and the inequality x < x   <

x + 1 which is valid for 0 < x < +oo we see that

a-2l/(RK R2  (2TTi\fiRe^)/fiReie)\2)'[yEl f2-   277   JO
1

dt2    '-2tt)0       il+log2\fiReie)\)i7T
dd,

for all R>R    such that fiz) 4 0, °° tot \z\ = R. Hence we see that

1 + J_ d2UiR)
R2    dt2 - 277   Jo

\fiReie)
¡iReie)

dd
(1 + log^fiRJW1"2'

tor all R > RQ such that fiz) 4 0, oo so for \z\ = R. If we now take the logarithm

of both sides of the above inequality and if we apply the theorem on the arithmetic

and geometric mean [ 7, p. 251] we deduce that

,L      1 d^UiR^  1   Ç2» ,/i/W0)
1°S   ï+^-TT-^Jo   l0S\\ltTAS) dd

fiReie)

-¿STiogil + log2\fiReiS)\)^2dd,

for all R > RQ such that fiz) 4 0, °° for |z| = R. Now from the above estimate

and from (2.8) and from the identities log x   = log  x and log  x2 = 2 log  x which

are valid for 0 < x <+oo we deduce that

(2.26)    2bz(R, /'//) < log(l + Jj. ftgà + ¿ j]77 log(l + log2|/(Re¿e)|) 1/2 dd,

for all R > R0 such that fiz) 4 0, oo for \z\ = R.  If we again apply the theorem on

the arithmetic and geometric mean [7, p. 25l] we see that

¿¡1° logU t los!|/(S«"')l)'/^e < l„g J- J^" (1 + lo,2|/(R.'»)|),/2 JO

= l0g + (l + BZ(R, /) + 772(R,   1//)),

dd
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for all R > RQ. From the above estimate and from (2.12), (2.13) we see that

¿J^log(l + log2|/(R^)|)1/2a-0

<log + íl + 2T(R,/)-¿J27riog|/(R0^)|a-o-log|-¿ARoarg/j

/UV*)

< log |2T(R,/) + R   TniQ   -f(r-^-d9\,

for all R >RQ. Hence we obtain that

±ffiog(i + iog2\f (Reñido

t   r2rr \fiRaei6)\ + 1 .„
<logMR,/) + log+R   +¿JQ   ^-^-¿0 + 2 log 2,

for all R > RQ. Now from the above estimate and from (2.26) we deduce that

2m(R, f/f) < log(l + ¿,¿^) + 3 log+ T(R, /)
\      R     dt     J

(2.27) x '

3   f2zrl/(R0^)| + l  M     A.      ,
+ o   L   — r-;-tñ:—dö+ 6 log 2,

2ttJo        |/(RQe'e)|

for all R > R0 such that /(z) ¿ 0, <» for |z| = R.

Now in order to obtain a suitable upper estimate for zzz(R, / //) in terms of

log   T(R, f) by means of (2.25), (2.27) we need to obtain an appropriate upper

estimate for d U(R)/dt    in terms of U(R). For this purpose the following lemma

will suffice.

Lemma (2.5).  Let f(x) be continuous and increasing for 0 < x < +oo with

/(0) = 0. Also let f'(x) exist and be continuous on 0 <x < + oo except possibly

for an isolated set of points.  If a > 0 then f'(x) <(f(x) + a)2 for all 0< x < +oo

except possibly for a set of measure at most  l/a.

For a proof of a more general result see [7, p. 253].

If a > 0 a double application of the above lemma leads immediately to the

estimate d2U(R)/dt2 < R\R(U(R) + 2/a)2 + 2/«|2 which is valid for all R>RQ

except possibly for a set of measure at most a.  From the above estimate and

from (2.14) we see that if a > 0 then
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logíl + -±dhlißj\ < 4 log+ u(R) + 2 log + R + log+ i + 6 log+ i + 11 log 2,

for all R > R. except possibly for a set of measure at most a. Now from the

above estimate and from (2.25) we see that, for all a > 0,

log (l + £ ¿^\ < 4 log+T(R, /) + 6 log+R + log+ I

277 Jo

f(R0ei6)

i^R0ei6)
d6 + 6 log+|+ 27 log 2,

for all  R > Rfl except possibly for a set of measure at most a.  Now from the

above estimate and from (2.27) we obtain the following result.

Theorem (2.4).  Let f be meromorphic on 0 < RQ < \z\ < + oo such that

fiz) 4 0, oo for \z\ = R .  Then for all a > 0 we have that

miR, (If) < 4 log+ TiR, f) + 3 log+R + log+ \
R

(2,28) ,     1     f277   /UV     )    +1        * +1
+ 4 T- I     -^-r-r—75T,— d6 + 3 log+ ± + 17 log 2,

2^J0       |/(R0e-ö)| S   a S

/or all R > R     except possibly for a se/ / = /(a, /) o/ measure at most a.

It should be noted on the basis of the above result that Nevanlinna's second

fundamental in the theory of meromorphic functions can be readily extended to

functions meromorphic on 0 < RQ < \z\ < +oo by arguing no differently than in

[7, pp. 31—34]. Note further that by virtue of the above result that H. Cartan's

theory of meromorphic curves can be easily extended to an analogous theory of

meromorphic curves on 0 < R0 < \z\ < +oo by reasoning similar to that utilized

by H. Cartan in [3].

3. Proof of main theorem. In this section we will offer a proof of our main

result, Theorem (1.1).

We first give some definitions. Let 0 < RQ < R, < +00 be fixed and suppose

that /,»•••» /    are m > 2 functions which are analytic and have no common zeros
1 771 — J

.on R„ < \z\ < R  . Then F ■ (/,, • • •, /  ! is called an analytic curve on   RQ <

\z\ < R j or simply an analytic curve. For RQ < jz| <Rj we define Uiz, F) =

Viz; fx,"',f ) by the condition that

(3.1) Uiz, F) = maxi|/1(z)|,..-, \fmiz)\\.
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Next for R0 < R < R j we define TQ(R, F) = TQ(R; /,,-•-, fj by the condition

that

(3.2) T0(R, F) = A. J277 log u(Reie, F)d6.

The expression T AR, F) is called the characteristic function of the analytic

curve F . This expression is not necessarily different from the characteristic

introduced for meromorphic curves by H. Cartan in [3].

For a > 0 and b > 0 we note that max I a, b] = a(b/a)    so that log maxi a, b ] =

log a + log  (b/a). From this identity and from Theorem (2.1), the Jensen integral

formula for an annulus', the following identity is easily verified.

Lemma (3.1).   Let f and g be analytic and have no common zeros on   0 <

^n - lzl ^ R   — +0° an^ suPPose that g(z) 4 0 for \z\ = R.. Then

T(R, f/g) = T0(R; f, g) -¿ fa" log \g(R0eie)\ d6-±ARo arg g log g-,

for R   <R<R .

As an immediate corollary we obtain the following result.

Corollary (3.1).  Let F - ¡/., • • •, /   ] be an analytic curve on 0 < R    <

\z\ < R, < +00 and suppose that f  (z) 4 0 for \z\ = R..  Then

T^ fJQ < r0(K. F) - ¿ ß* log |/m(Roe'ö)| d6-A- ARo arg /„ log ̂

for R 0<R < Ry and k « 1, • • •, m - 1.

We are particularly interested in the above result when /    is a polynomial.

The following result is readily verified.

Corollary (3.2).  Let F = 1/j, • • •, /  j be an analytic curve on 1 < R   <

|z| <R, <+°o and suppose that f     is a polynomial such that \f (z)\ > 1 for

\z\ = RQ.  Then TQ(R, F) > 0 for RQ<R<Ry.  Also there is some positive con-

stant A so that

T(R, fA < A log R + T0(R, F),    for R0<R<Ry and k = 1, 2,..., m.

We now have the following result which will be of service   in the discussion

to follow.

Lemma (3.2).  Let F = Í/.,- • •, /   ] be an analytic curve on  1 < R. <

|z| <+oo and let f    be a polynomial such that \f (z)\ > 1 for \z\ = R . Suppose

there are positive constants B and C and suppose there is an increasing sequence

{R .], 7 = 1, 2, • • •,  of real numbers greater than R. and diverging to +00 such that
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T0iRp F)<B log R. + C log+T0iR., F),

for j = 1, 2, • • • •  Then the im - l) > 1 ¡unctions f .,•••, /      .do not have an

essential isolated singularity at the point infinity.

Proof. Since (log x)/x —> 0 as x —> +oo there is some x. > 0 so that

C log  x < x/2 whenever x > xQ. Hence

T0iRp F) < (2S + x0/log R0) log Ry    for / = 1, 2,. • •.

From the above estimate and from Corollary (3.2) we see that there is some posi-

tive constant D so that TiR , ¡A < D log R . for / = 1, 2, • • •, and k= 1,2,-" ,

772—1. From Corollary (2.1) it follows that the functions /,»•••»/  _ j do not

have an essential isolated singularity at the point infinity. This proves the

result.

We next need the following preliminary result.

Lemma (3.3).  Let f be polyanalytic on some nonempty  subset A of Y and

suppose that f is represented on A by means of the equation fiz) =

£?_. izzpjAz), where /., •••, /    are analytic on A, and where f   4 0 on A.

Then f may be represented on A by means of the equation

m

A*) = £ pk(zz)gk(z),
fe=l

where for k = 1, • • •, m the P,   are monic polynomials of degree d,   such that

0 < z/. < d2< • • • < d  , where g,» • ••» g     are analytic and linearly independent

on A, where each one of the functions g ,»•••» g     z's oBe of the functions

fn,"', f . and where e    = f .
'0'        ' '«' °m     'n

A proof of the above result can readily be established by induction on

«>0  [l].

Now let 0 < \z\ < +oo be fixed and let / be polyanalytic on R. < \z\ < + «>,

that is on A(oo, l/Rj), and admit the exceptional value zero at the point infinity.

Suppose further that / is represented on A(oo, l/R^) by means of equation (1.1)

where /   = 1 on A(oo, l/Rj). From Lemma (3.3) it is easy to see that / may be

represented on Rj < \z\ < +<x> by means of the equation

(3.3) A*) = hiz)giz),

where h is analytic and never zero on R. < \z\ <+oo, and where g is poly-

analytic on R, < \z\ <+oo and represented on R, < \z\ <+<x> by means of the

equation
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(3.4) g(z) = £ Pki**)gA.z),
fe=i

where for k = 1, • • • , m the P,   are monic polynomials of degree  d.   such that

0 < d   < d   < • • ' < d  , where g,, • • •, g     ate analytic and linearly independent

on R. < |z| < + oo, and where g    is a nonidentically zero polynomial.

Note that g admits the exceptional value zero at the point infinity. Now in

order to establish Theorem (1.1) it is only necessary to show that g does not

have an essential isolated singularity at the point infinity, that is it is only

necessary to show that the functions gy,"',g   _, do not have an essential

isolated singularity at the point infinity.

Now if m = 1 in (3.4), then Theorem (1.1) follows trivally. Hence in the dis-

cussion to follow we shall assume that m > 2.

There is some R„ with RQ>Ry so that g never vanishes on RQ < \z\ <+»,

It therefore follows that the m > 2 functions g y, • • •, g     are analytic, linearly

independent, and have no common zeros on RQ < |z| < +oo.

At this point it will be convenient to impose several further conditions on

RQ. First note that g     is a nonidentically zero polynomial. From (3.3), (3.4) we

see that we may assume that g    is a polynomial of degree at least m. We may

now assume that RQ with RQ > R y is so chosen that |gm(2)| > 1 for |z| = R

and |g^ (z)| / 0 for |z| = RQ and k = 1,« •«, m - 1. Second note that g,,- • •, g

ate analytic and linearly independent on R. < |z| <+oo. Hence the Wronskian

Wigy,' • •, gm) of g y, • " , gm does not vanish identically on R, < |z| < +oo. We

may now assume that R 0 with RQ > R j is so chosen that W(g.» • • •, g  ) does

not vanish on  |z| = R_. Finally we shall assume that RQ> 1. Such a value of

RQ once determined will remain fixed for the remainder of this section.

Now for each p > Rq we define g(z, p) on R» < |z| < +oo by the condition

that

777

(3-5) giz, p) = £ pkip\kiz~)-
fe = i

Observe  for  each   p > RQ  that  g(z, p) is analytic  on Rn< \z\ <+°° and that

giz, p) = g(z) fot \z\ = p. Note also that for each p> RQ that g(z, p) ¡s a cer-

tain linear combination of the zzz > 2 functions g,, • • •, g    which are analytic,

linearly independent, and with no common zeros on RQ < |z| < +oo.

Let a,, a , • • •, a     , be (m + l) > 3 distinct real numbers such that
1 ¿ 771+1 —

(3.6) 2<a1<a2 <••.< am + 1<3.

These (m + l) real numbers a., a., • • •, a     . once chosen will remain fixed
1       ¿ m +1
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throughout the remainder of this section.

In order to keep our notation reasonably compact we let

(3.7)

for p > Rg. We also let

(3.8) G,

Pß=UßP      (p=l,2,... ,m + 0,

giz, p^      (u= 1, 2,-.. ,m + 1).

for p>RQ and RQ |z| < +oo.

From (3.5), (3.8) we obtain

(3.9) <V=    Z    Pk{PpSkiz) (P=   1,2, ••-,771+1),
* = 1

for p>RQ and RQ < |z| <+oo.

Next let /3j, /32, • • •, ßm be a sequence of m distinct integers selected in

any manner from the im + l)  integers  1, 2, • •. , m + 1. Such a sequence of ttz

integers ßx, ß2, • • •, ß     formed in this manner will be termed admissible.

From (3.9) we see that

(3.10) Gß»=zpyßM{z) <*«i.2,...,«.),
k=\

tor P> RQ and RQ < \z\ < +oo and for all admissible ßx, ß2, •• • , ßm-

We now assume that oQ with o   > R    is so chosen that PAp2) 4 0 for

p>oQ and ¿ = 1, 2, • • •, m.

Hence (3.10) can be written as

(3.11) 'V
*=1

PMJ
p¿p¿)PAp2)g,iz)      (p= 1, 2,-.., m),

for p>oQ and RQ < |z| < +oo and for all admissible ß., ß2, • • •, ßm.

For all p>oQ and for all admissible ßx, ß2, • • •, ß     let

(3.12) C(ßv...,ßm-p)

denote the determinant of order m of the matrix with P' Ap „ ) as the entry in the

hh. column and the pth row for k, p = 1, 2, • • • , m. Again for p~>oQ and admissible

ßx,ß2,...,ßmlet

(3.13) D(ßl,...,ßm,p)

denote the determinant of order m of the matrix with P¡Ap a )/PApi as the

entry in the Ath column and the pth row for k, (i = 1, 2, • • • , m. Finally for all

admissible  /3j, ß2, • • •, ßm let
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(3.14)

\aßi '

0(ßy,...,ßm)     =

2d2

Zß\   '

2d\ 2d2
%ß2   '     aß2   >

ß\

2d„
%ß2

2dl 2d2 2d„

be the determinant of order m oí the matrix with a „ *   as the entry in the ¿th

column and the pth row for k, p = 1, 2, • • • , m.  Here  a , a , • • •, a      .  satisfy

(3.6) and d,   is the degree of the polynomial  P,   for & = 1, 2, • • • , m.

It is not difficult to be persuaded that oißy, • • • , /3m) ^ 0 for all admissible

ßy, ß2, • • •, ßm. To see this fix aß , • • •, a^ . Then o(ßy, • • -, ß  ) can be

regarded as a polynomial in s» .  Evidently a„ , • • •, a -    are (tzz - l) distinct

positive real roots of o~(ßy, • • • , ß   ).  If we now expand the determinant in (3.14)

by means of the first row we deduce from Descarte's rule of signs that

oißy, • " , ß  ) can have at most (m - l) positive real roots. Consequently

oiß y, " •, /S   ) 4 0 as asserted.

Now for k = 1, 2, ■ • •, m the polynomials P.   are monic and of degree

dk > 0. From (3.7) we deduce that P'fe(p2)7'P)(p2) —• a^* as p —> +oo for it -

1, 2, • • •, m and ft = 1, 2, • • •, m +  1.  From the above observation and from

(3.13), (3.14) we see that D(ßv ... , ßm; p) — oißy, • • • , j8j 4 0 as p -, +oo

for all admissible ß y, ß2, • • •, ß   . Hence we may assume that ctq with oQ> RQ

is chosen so large that

(3.15) \D(ßv---,ßm,p)\>D,

for all p >oQ and for all admissible ß., ß2, • • • » ß   , where D is some positive

constant.  From (3.12), (3.13) we see that

C(ßy,...,ßm,p)=D(ßy,...,ßm,p)Py(p2)P2(p2)...Pm(p2)

for all p >oQ and for all admissible  ß., ß2, • • •, ß   .  From this identity and

from (3.15) we see that crQ with o. > R. can be chosen so large that

(3.16) |C(/31? ••-, /3m;p)| > 1,

for all p>crQ and for all admissible ßy, ß2, — , ßm.

In view of (3.10), (3.16) we see that for p > a.  that any m oí the (m + l)

functions G., G-,  •••, G      ,  are analytic linearly independent, and have no

common zeros on  R„ < |z| < +oo.
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Now let G denote the analytic curve.

(3.17) G = \gv...,gJ,

and for p>oQ  let Gip) denote the analytic curve

(3.18) G(p)=|G1,"-,Gm + 1l.

From (3.1), (3.11), (3.15), (3.18) we see that there is some positive constant

A so that \Pkip2)gkiz)\ < AUiz, Gip)) tor p>oQ and RQ<\z\ <+°o and k =

1, 2, • " , m. We may now assume that oQ with oQ> RQ is chosen so large that

|Pfe(p2)| > A for 'p>o0 and k = 1, 2, •.., ttz. Hence \g¿z)\ < Uiz, Gip)) for

P>Oq and RQ < \z\ < +<x> and k = 1, 2, •••, m. From the above estimate and

from (3.1), (3.17) we see that  Uiz, G) < Uiz, Gip)) tor p>oQ and RQ < \z\ <+oo.

From the above estimate and from (3.2) we see that

(3.19) T0iR, G) < T0iR, Gip)),

for p>oQ and R > R..

Next from (3.7), (3.9) we see that

G(k)
lim       >,.,=/fe)

uniformly with respect to z on \z\ = RQ for & = 0, 1, • • •, rrz - 1 and p = 1,

2, • • •, ttz + 1. From the above equation we see that oQ with oQ> R.  may be

chosen so large that G*  ' 4 0, oo for |z| = RQ and £ = 0, 1, • • • , m - 1 and p =

1, 2, • • • , ttz + 1, whenever p > oQ. Also we see that oQ with crQ > RQ may be

chosen so large that there is some positive constant A  so that

|GU)I + 1(3.20) l\   '   J. < ̂

i   m        i

for \z\ = R. and i=l, 2, •••,!» — 1 and /z = 1, 2, • • •, m + 1, whenever p > o..

Next for p>oQ define Hiz, p) on RQ < ¡z| < +oo by the condition that

,       .     G,G~ ... G     ,
(3.21) rY(z,p) = -     2 »Y—

Evidently Mz, p) is meromorphic on RQ < |z| < +oo and Mz, p) ^ 0, oo for

|z| = R. whenever p>cr0»

Since g never vanishes on RQ < \z\ < +oo there is some integer p so that

A   arg g = 277p for all p > RQ. Hence from (3.5) we see that A   arg giz, p) = 2np

for all p > RQ. Since g  iz) 4 0 tor \z\ = R  , there is some integer q so that

AR   arg g    = 2nq. From (3.5) we see that giz, p)/Pmip ) —> ¿mU) as p —* +oo

uniformly with respect to z on \z\ = RQ. Hence we may assume that o-Q with
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a- > RQ is chosen so large that AR   arg g(z, p) - 2nq for p > 0"Q. Consequently

A   arg g(z, p) - AR   arg g(z, p) = 2nip - a) for p > crn. Thus for p>crQ we see

that g(z, p) has exactly  s = (p - q) zeros, counting multiplicities, on R„ < |z| < p.

Thus for p. = 1, 2, • • •, m + 1 we see that if p   > o-Q then G   = g(z, p ) has s

zeros on RQ < |z| < p     From (3.6), (3.7) we see that 2/3 < p    for  p > 0 and it =

1, 2, • • •, m + 1. Thus for p > CTg and p = 1, 2, • • •, m + 1 we see that G    has at

most s zeros on RQ < \z\ < R fot all R >RQ provided that R < 2p. Hence there

is some positive constant A so that N(R, Rq, l/G ) < A log R, for p > oQ and

R0-R 5 2p and for /x = 1, 2, • • •, zzz + 1. From (3.21) we see that

N(R'R°'/7¿rp"))-£  MR, R0, l/G^),

for p > o « and R > R_. From the above two inequalities we see that there is

some positive constant A so that

(3.22) N(R, R0, l///(z, p)) < A log R,

for p > a0 and RQ < R < 2p. Next from (3.7), (3.9), (3.21) we see that

lim
H(z, p)

11 111        ™   ' '-■■ ..-_-,.    _  __-.

P^°°PmipA-.-Pm(Pm+y) W(gy,...,gm)

uniformly with respect to z on |z| = R_. Hence we may assume that rr. with

ffQ > R. is chosen so large that there is some positive constant A and some

integer p so that

(3.23) log\H(z, p)\ < A log p,       ARq arg H(z, p) = 2np,

fot \z\ = RQ and p > ffQ.

In the foregoing discussion we have chosen o"Q with crQ > RQ > 1 so as to

satisfy a number of conditions. This a» will now remain fixed for the remainder

of this section.

Now from Theorem (1.2), the Jensen integral formula for an annulus, we see

that

A STlog imRe¿9, p)1 d6=N (R' Ro' ̂ ¿—j) - n(r' ro' w(z> p))

+ ¿ /rlo« |fí(Roe¿e)lJö+¿ \ -eH(z' p> ̂ r0'

tot p > 0". and R > RQ. From the above identity and from (3.22), (3.23) we see

that there are positive constants A and B so that
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(3.24) A ST log \H{ReW' P]\ d6 K A log R + B log P'

tot p > oQ and RQ < R < 2p.

Next for all admissible ßy, ß2, • ' •, ßm let W(G„ , • • • , GQ ) denote the

Wronskian of G» , G „ , ... f G . .   For p > o. and R0 < |z| < +00 let V(z, p)

denote the maximum of the absolute value of the expression

1, 1, •••, 1

Glh GJi ... GJL
Gßl Gß2 "' Gß
^ It ^11 f-H

Jh. 1I1 li
(3.25) G;...G;-" <v Gß2' '"' Gß

W(G, >GßJ

ffin-l)    n<m-ï) nfy-ü
_£l-      Jl.    ... ß»>
Gßl '    Gß2 ' '     Gßm

tot all admissible /3,, ß-, • • •, ß   .

It is easy to see that there are positive constants A and B so that

21- Jo   log V(Re¿0' ̂e<A + BI   L  ™(R. GjV GM),
tllB-l

p-=l k=l

tot p>o0 and  R > R„. However zzz(R, G^/G ¿ < S*=1 m(R, G^'Vc0'-1'), for

p>o~Q and R > Rq and ¿ = 1, 2, • • •, zzz - 1  and p. = 1, 2, • ••, m + 1. From the

two previous inequalities we see that there are positive constants A and B such that

77! + 1   771- 1

(3-26>   2ifSTIogv{Rei8'p)dd<A + 3 X E w(R'g^Vg«-1*),

for p>cQ and R >RQ.

From Theorem (2.4) we see that for k ~ 1, 2, • • •, m — 1 and p = 1, 2, • • •,

772+1  and for a > 0  and p>_o    that

m(R, C«>/6<*-1}) < 4 log+T(R, G^-!)) + 3 log R
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for all R > RQ except perhaps for a set / = lia, p, k, p.) of measure at most a.

It is important to note that / depends not only on a but also on the function

^u 8    "   Vi a p). Thus we see that / depends on the parameters a, p, k, p.

From the above estimate and from (3.20) we see that there is some positive con-

stant A so that for k = 1, 2, • • •, m — 1 and p = 1, 2, • • •, ttz + 1 and for a > 0

and p > C7Q that

m(R, G^/G^-l)) < 4 log + T(R, G^"») + A log R + 3 log+|,

for all R > RQ except perhaps for a set / = lia, p, k, p.) of measures at most a.

However

T(R, G*-1 >) ¿£ ttz (R, -äilj ♦ TiR, Gß),

tor p>oQ and R> RQ and for ¿ = 1, 2, ■ • •, m - 1 and p = 1, 2, • • •, ttz + 1.

From the above two estimates we see that there is some positive constant A so

that for k = 1, 2, • • •, m - 1 and p = 1, 2, • • •, ttz + 1 and for a > 0 and p>oQ

I       G(fc) \ fc-1     /       G(,)\
* (R> ¿TJfrryJ < 4 log+T(R, GM) + A log R + 3 log+ \ + 4 £   m ÍR, ̂ r)j,

for all R > RQ except perhaps for a set / = lia, p, k, p) of measure at most a.

From the above recursive inequality we deduce that for k=l,2,'",m — 1 and

p= 1, 2, " -, m + 1 and for a > 0 and P>&0 that

(G(k) \
R, ^yy] < 5k~ l[4 log+ TiR, Gj + A log R + 3 log+ 1/a]

for all R > R. except perhaps for a set / = /(a, p, /s, p) oí measure at most ka.

Consequently for p = 1, 2, • • •, m + 1  and for a > 0 and p > ffQ we see that

m-1       / /-(*:)   \ !

£   w   R) -JL-J < 1__ [4 iog + T(R, Gf) + A log R + 3 log+ 1/a]

for all R> RQ except perhaps for a set / = lia, p, p) of measure at most

mim - l)a/2. Hence for a > 0 and p > ffn we see that
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771+1    772-1 / ç(fe)    \ 771+1

Z  Z -[K-töfrr <5m_1 £ VrtR-G,,)
M=l    * = 1      \       M        / M=l

+ Lw+lp""1 [A log R + 3 log+ 1/a],

for all R > R0 except perhaps for a set / = lia, p) of measure at most

im + 1)772(772 - l)a/2. Hence there exist positive constants A, B and C so that for

a > 0 and p > o0 we have that

771 + 1 771-1      /       c(k) \ m+l

Z  Z ^k:^T))<AlogR + sl08 « + c £ log T(R>G^

Zi=l    fe = l      \     Gp        I f-1

for all R > R0 except perhaps for a set / = lia, p) of measure at most a. From

the above inequality and from (3.26) we see that there are positive constants A,

B, and C so that for a > 0 and p > oQ we have that

771+1

; J2" log ViRei6, p)d6<AlogR+B log+ | + C^   log +T(R, G ¿
277. M*l

for all R > R0 except perhaps for a set / = lia, p) oí measure at most a.  Now from

(2.17), (3.7), (3.9) we see that there is some positive constant A  so that

TiR, GJ < A log p + 2£=1 T(R, gfe) for p > ff0 and R > RQ and for p = 1, 2, • • •,

772+1. On the other hand we see from Corollary (3.2) that there is some positive

constant A so that TiR, ¿fe) < A log R + TQiR, G) for R>RQ and k= 1, 2, •••, 772.

From the three previous inequalities we see that there are positive constants

A, B, C, and D so that for a > 0 and p >o0 we have that

¿J>gvw%) ¿Ö
/2    O'T'S

< A log R + B log p + C log+ 1/a + D log +TQ(R, G),

for all R>R0 except perhaps for a set / = /(a, p) of measure at most a.

Now from (3.10), (3.12) we see that

V(Gßi ,...,Gßm)=Cißx,...,ßm, p)Wig j, • • •, gj,

for p>o0 and R0 < \z\ < +00 and for all admissible ßx, ß2, • • •, ßm. Now from

the above identity and from (3.21) we deduce that

G±__ _L_^ßi,.-.,GßJ

Hiz,p)     Cißv...,ßm;p)       Gßi...Gßn
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for p>o"0 and RQ < |z| < +00 and for all admissible ßy, ß2, •••, ßm, where ß is

that unique integer from the (m + l) integers 1, 2, • • •, m + 1 which is not among

the integers ßy, ß2, • • •, ß . From the above identity and from (3.16), (3.25) we

see that |G^| < \H(z, p)|V(z, p)  tot p>o0 and RQ < |z| <+oo and for ß = 1,

2, • • •, r?z + 1. From the above estimate and from (3.1), (3.18) we see that

U(z, G(p)) < \H(z, p)\V(z, p) fot p>o0 and RQ < \z\ < +00. From the above

estimate and from (3.2) we deduce that

(3.28)    TAR, G(p))<±fflog\H(Reie, p)| dd + ¿ ff log V(Reie, p)d6,

for p > oQ and R>RQ.

From (3.19), (3.24), (3.27), (3.28) we see that there are positive constants

A, B, C, and  D so that for a > 0 and p~>a n we nave tnat

T0(R, G) < A log R + B log p + C log+ l/a + D log+T0(R, G),

for all RQ < R < 2p except perhaps for a set / = /(a, p) of measure at most a.

Hence there are positive constants A, B, and C so that for a > 0 and p>crQ

we have that

T0(R, G) < A log R + z3 log+ l/a + C log+Tn(R, G)

for all p < R < 2p except perhaps for a set / = /(a, p) of measure at most a. Now

let a > 0 be fixed. Let o~k = 2*<t0 and a¿ = a/2k+1 foi k = 0, 1, • • •. Hence we

see that

T0(R, G) < A log R + ß log+ l/ak + C log+ T0(R, G)

fot o-,<R<o,   y except perhaps for a set /,  of measure at most a,  for k =

0, 1, • • •. Now for k = 0, 1, • • • we see that if ak < R < ak   . then l/afe =

2k+1/a = 2ok/oQa < 2R/oQa. Thus for k = 0, 1, • • • we see that if ak < R < afe  y

then log  (l/aA < log R + log 2 + log  (l/a). Hence we see that there are positive

constants A, B, and C so that

T0(R, G) < A log R + B log+ l/a + C log+TQ(R, G)

for all 2 tj. < R < 2   + ct. except perhaps for a set /,   of measure at most

a/2k+l fot k = Q, 1, • • •. Hence we see that for all a > 0

T0(R, G) < A log R + B log+ l/a + C log+ T0(R, C)

for all R > a* except perhaps for a set / = /(a) of measure at most a. Hence

there are positive constants A and B so that

(3.29) T0(R, G) < A log R + B log+ T0(R, G)
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for all R >R. except perhaps for a set of finite measure.

From Lemma (3.2) and from (3.17), (3.29) we see that the functions g., • ••,

g   _ j do not have an essential isolated singularity at the point infinity. From

(3.3) and (3.4) we see that the functions f0, fy, • '•, f     . do not have an

essential isolated singularity at the point infinity. This completes the proof of

Theorem (1.2).

4. Applications.  In this section we will give some simple applications of

Theorem (1.1) and of the equivalent formulations of Theorem (1.1) given in

Corollaries (1.1), (1.2), and (1.3).

First if in Corollary (1.2) we let A(z , R) = Y, that is if we let z   - oo and

R =+oo, we obtain the following result.

Corollary (4.1).  Let f be polyentire and given by equation (1.1) and suppose

that f admits the exceptional value zero at the point infinity.  If j = 0, 1, • • •, n

is such that f. 4 0 then the function f. admits the exceptional value zero at the

point infinity and for i = 0, I, • • • , n the junctions f./f. are rational functions.

Next if in Corollary (1.3) we let A(zQ, R) 4 Y we obtain the following repre-

sentation due to M. B. Balk [l] for polyentire functions which admit an excep-

tional value at the point infinity.

Corollary (4.2).  // / is a polyentire function which admits the exceptional

value zero at the point infinity, then there exists an entire function h and a

polynomial P(z, z)  in z and z such that f(z) = eh(-z'P(z, z), for all z £ Y.

First a comment concerning the representation of the polyanalytic function /

in Corollary (1.3) seems to be in order. If A(zQ, R) = Y then from Corollary (4.1)

we see that the polyanalytic function g in Corollary (1.3) may be assumed to be

a polynomial in z and z.  However if A(z., R) 4 Y then g need not in general be

a polynomial in z and z. Suppose that / is represented on A(zQ, R) by (1.1)

where /. 4 0 on A(z , R) for some / = 0, 1, • • • , n.  Then it is easy to see that g

may be assumed to be a polynomial in z and z if and only if for z = 0, 1, • • •, n

the functions f./f. ate rational functions.

As a further application of Theorem (1.1) we deduce the big Picard theorem

for polyanalytic functions.

Corollary (4.3).  Let f be polyanalytic with an isolated singularity at the

point z .  // / admits the exceptional values zero and one at the point zQ then f

has a nonessential singularity at the point z .

Proof.  Let / be polyanalytic on A(z , R) and represented on A(zQ, R) by

(1.1) where /   4 0 on A(z , R). We need only consider the case when n > 1.
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Since / admits the exceptional value zero at the point z.  then from Corollary

(1.2) we see that the function /    admits the exceptional value zero at the point

Zg and the functions f0/fn, f \lfn> ' • • > /„_ i//„ have a nonessential singularity

at the point zn. Now / - 1 is polyanalytic on Aiz^, R) and admits the excep-

tional value zero at the point zQ. Hence the function (/0 - 1)//    has a nonessen-

tial singularity at the point zQ. It now follows that the functions /Q, fx, • • •, /

have a nonessential singularity at the point zQ. Consequently the polyanalytic

function / has a nonessential singularity at the point zQ. This proves the result.

The above result can be extended if we introduce a more general notion of

exceptional value. Let / be polyanalytic with an isolated singularity at the point

Zq. Now let g be polyanalytic with a nonessential isolated singularity at the

point zQ. Then g is said to be an exceptional value for / at zQ it and only if

/- g has the exceptional value zero at the point zQ. If g and h are two excep-

tional values for / at z. these two exceptional values g and h are said to be

distinct if and only if g — h does not vanish identically on some annular neigh-

borhood of the point zQ.

We now have the following general version of the big Picard theorem for

polyanalytic functions.

Corollary (4.4).  Let f be polyanalytic with an isolated singularity at the

point zQ. If f admits two distinct exceptional values at the point zQ then f has

a nonessential singularity at the point zQ.

Proof. Let g and h be the two distinct exceptional values for / at the

point z_. There is some 0 < R < +» so that /, ¿, and h are polyanalytic on

AizQ, R).  Assume that /, g, and h are represented on A(zn, R) by means of the

equations

/w-Z^/fcW- gW=Z*Vz)' and ¿(z)=Z**Vz)'

k = 0, 1, • • •, b, where for k = 0, 1, • • •, n the functions /,, g,, and hk are

analytic on AizQ, R). Since the polyanalytic functions ¿   and h are not identical

there is some / = 0, 1, • • •, n so that g . 4 h.. Hence f ■ 4 g- or f. 4 h .. Assume

that /. 4 g - Since the polyanalytic function / — g admits the exceptional value

zero at the point zQ we see that /. — g. admits the exceptional value zero at the

point zQ. Also for i = 0, 1, ••• ,n the functions (/   - g¡)/if- — g) have a non-

essential singularity at the point zQ. Now /.=/>. or /. 4 h.. If f. = h ■ we see

that for z = 0, 1, • • •, n that the functions /. have a nonessential singularity at

the point z_. In this case the polyanalytic function / has a nonessential singu-

larity at the point zQ. Suppose next that f. 4 h.. Since the polyanalytic function

f — h admits the exceptional value zero at the point zQ we see that f ■ — h.

admits the exceptional value zero at the point zQ.  In this case we see that /.
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admits the two distinct exceptional values g. and h. at the point z_. Hence /.

has a nonessential singularity at the point. Thus for z = 0, 1, • • •, n we see that

the functions /. have a nonessential singularity at the point zQ. In this case the

polyanalytic function has a nonessential singularity at the point zQ. This proves

the result.

The above general version of Picard's big theorem for- polyanalytic functions

was originally established in [2] by utilizing the theory of quasinormal families

of analytic functions and the Poisson-Jensen integral formula.

Note that on the basis of Theorem (1.1) or one of its equivalent formulations

in Corollaries (1.1), (1.2), and (1.3), we can obtain a number of results which are

similar in character to the result of Corollary (4.4). As one example let / be

polyanalytic on A(zQ, R) and represented on A(zQ, R) by means of equation (1.1).

Suppose further that there is some ;' = 0, 1, • • •, n such that /. 4 0 on A(zQ, R)

and such that /. has a nonessential isolated singularity at the point zQ. Then if

/ admits the exceptional value zero at the point zn, it is easy to see that / has

a nonessential isolated singularity at the point zQ. As a further example let / be

analytic with an isolated singularity at a point z„ and let P(z, z) be a poly-

nomial in z and z of positive degree in z. Then if / admits the exceptional

value P(z, z) at the point zQ, it is easy to see that the analytic function / has a

nonessential isolated singularity at the point z0.
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