Finite groups with a proper $2$-generated core
HTML articles powered by AMS MathViewer
- by Michael Aschbacher
- Trans. Amer. Math. Soc. 197 (1974), 87-112
- DOI: https://doi.org/10.1090/S0002-9947-1974-0364427-8
- PDF | Request permission
Abstract:
H. Benderβs classification of finite groups with a strongly embedded subgroup is an important tool in the study of finite simple groups. This paper proves two theorems which classify finite groups containing subgroups with similar but somewhat weaker embedding properties. The first theorem, classifying the groups of the title, is useful in connection with signalizer functor theory. The second theorem classifies a certain subclass of the class of finite groups possessing a permutation representation in which some involution fixes a unique point.References
- J. L. Alperin, Richard Brauer, and Daniel Gorenstein, Finite groups with quasi-dihedral and wreathed Sylow $2$-subgroups, Trans. Amer. Math. Soc. 151 (1970), 1β261. MR 284499, DOI 10.1090/S0002-9947-1970-0284499-5
- Helmut Bender, Transitive Gruppen gerader Ordnung, in denen jede Involution genau einen Punkt festlΓ€Γt, J. Algebra 17 (1971), 527β554 (German). MR 288172, DOI 10.1016/0021-8693(71)90008-1
- Daniel Gorenstein and Koichiro Harada, On finite groups with Sylow $2$-subgroups of type $A_{n}$, $n=8,\,9,\,10,\,11$, Math. Z. 117 (1970), 207β238. MR 276348, DOI 10.1007/BF01109844
- Daniel Gorenstein and Koichiro Harada, Finite simple groups of low $2$-rank and the families $G_{2}(q),\,D_{4}^{2}(q),\,q$ odd, Bull. Amer. Math. Soc. 77 (1971), 829β862. MR 306301, DOI 10.1090/S0002-9904-1971-12794-5
- Daniel Gorenstein and Koichiro Harada, Finite groups whose Sylow $2$-subgroups are the direct product of two dihedral groups, Ann. of Math. (2) 95 (1972), 1β54. MR 313384, DOI 10.2307/1970852 β, Finite groups of sectional 2-rank at most four (to appear).
- Daniel Gorenstein and John H. Walter, Centralizers of involutions in balanced groups, J. Algebra 20 (1972), 284β319. MR 292927, DOI 10.1016/0021-8693(72)90060-9 E. Shult, On the fusion of an involution in its centralizer (to appear).
- John G. Thompson, Fixed points of $p$-groups acting on $p$-groups, Math. Z. 86 (1964), 12β13. MR 168653, DOI 10.1007/BF01111272
- John H. Walter, The characterization of finite groups with abelian Sylow $2$-subgroups, Ann. of Math. (2) 89 (1969), 405β514. MR 249504, DOI 10.2307/1970648
- M. Suzuki, Applications of group characters, Proc. Sympos. Pure Math., Vol. VI, American Mathematical Society, Providence, R.I., 1962, pp.Β 101β105. MR 0133362
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 197 (1974), 87-112
- MSC: Primary 20D05
- DOI: https://doi.org/10.1090/S0002-9947-1974-0364427-8
- MathSciNet review: 0364427