General theory of the factorization of ordinary linear differential operators
HTML articles powered by AMS MathViewer
- by Anton Zettl
- Trans. Amer. Math. Soc. 197 (1974), 341-353
- DOI: https://doi.org/10.1090/S0002-9947-1974-0364724-6
- PDF | Request permission
Abstract:
The problem of factoring the general ordinary linear differential operator $Ly = {y^{(n)}} + {p_{n - 1}}{y^{(n - 1)}} + \cdots + {p_0}y$ into products of lower order factors is studied. The factors are characterized completely in terms of solutions of the equation $Ly = 0$ and its adjoint equation ${L^ \ast }y = 0$. The special case when L is formally selfadjoint of order $n = 2k$ and the factors are of order k and adjoint to each other reduces to a well-known result of Rellich and Heinz: $L = {Q^ \ast }Q$ if and only if there exist solutions ${y_1}, \cdots ,{y_k}$ of $Ly = 0$ satisfying $W({y_1}, \cdots ,{y_k}) \ne 0$ and $[{y_i};{y_j}] = 0$ for $i,j = 1, \cdots ,k$; where [ ; ] is the Lagrange bilinear form of L.References
- John H. Barrett, Oscillation theory of ordinary linear differential equations, Advances in Math. 3 (1969), 415–509. MR 257462, DOI 10.1016/0001-8708(69)90008-5
- Earl A. Coddington and Norman Levinson, Theory of ordinary differential equations, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1955. MR 0069338
- W. A. Coppel, Disconjugacy, Lecture Notes in Mathematics, Vol. 220, Springer-Verlag, Berlin-New York, 1971. MR 0460785, DOI 10.1007/BFb0058618
- I. M. Glazman, Direct methods of qualitative spectral analysis of singular differential operators, Daniel Davey & Co., Inc., New York, 1966. Translated from the Russian by the IPST staff; Israel Program for Scientific Translations, Jerusalem, 1965. MR 0190800
- Philip Hartman, Ordinary differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. MR 0171038
- Philip Hartman, On disconjugacy criteria, Proc. Amer. Math. Soc. 24 (1970), 374–381. MR 251304, DOI 10.1090/S0002-9939-1970-0251304-8
- Erhard Heinz, Halbbeschränktheit gewöhnlicher Differentialoperatoren höherer Ordnung, Math. Ann. 135 (1958), 1–49 (German). Vorwort von B. L. van der Waerden. MR 101941, DOI 10.1007/BF01350826 M. G. Kreĭn, Differential self-adjoint operators and their symmetric Green’s function, Mat. Sb. 2 (44) (1937), 1023-1072. (Russian)
- A. Ju. Levin, The non-oscillation of solutions of the equation $x^{(n)}+p_{1}(t)x^{(n-1)}+\cdots +p_{n} (t)x=0$, Uspehi Mat. Nauk 24 (1969), no. 2 (146), 43–96 (Russian). MR 0254328 J. Mikusiński, Sur l’equation ${x^{(n)}} + A(t)x = 0$, Ann. Polon. Math. 1 (1955), 207-221. MR 19, 141.
- Kenneth S. Miller, Linear differential equations in the real domain, W. W. Norton & Co. Inc., New York, 1963. MR 0156014
- G. Pólya, On the mean-value theorem corresponding to a given linear homogeneous differential equation, Trans. Amer. Math. Soc. 24 (1922), no. 4, 312–324. MR 1501228, DOI 10.1090/S0002-9947-1922-1501228-5
- Jerry R. Ridenhour, On $(n,\,n)$-zeros of solutions of linear differential equations of order $2n$, Proc. Amer. Math. Soc. 44 (1974), 135–140. MR 330630, DOI 10.1090/S0002-9939-1974-0330630-1
- Robert Ristroph, Pólya’s property $W$ and factorization—A short proof, Proc. Amer. Math. Soc. 31 (1972), 631–632. MR 288338, DOI 10.1090/S0002-9939-1972-0288338-5
- D. Willett, Generalized de la Vallée Poussin disconjugacy tests for linear differential equations, Canad. Math. Bull. 14 (1971), 419–428. MR 348189, DOI 10.4153/CMB-1971-073-3
- Anton Zettl, Factorization of differential operators, Proc. Amer. Math. Soc. 27 (1971), 425–426. MR 273085, DOI 10.1090/S0002-9939-1971-0273085-5
- Anton Zettl, Explicit conditions for the factorization of $n$th order linear differential operators, Proc. Amer. Math. Soc. 41 (1973), 137–145. MR 320413, DOI 10.1090/S0002-9939-1973-0320413-X
- A. Zettl, Formally self-adjoint quasi-differential operators, Rocky Mountain J. Math. 5 (1975), 453–474. MR 379976, DOI 10.1216/RMJ-1975-5-3-453
- Anton Zettl, Factorization and disconjugacy of third order differential equations, Proc. Amer. Math. Soc. 31 (1972), 203–208. MR 296421, DOI 10.1090/S0002-9939-1972-0296421-3
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 197 (1974), 341-353
- MSC: Primary 34A30
- DOI: https://doi.org/10.1090/S0002-9947-1974-0364724-6
- MathSciNet review: 0364724