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SUBSPACES OF THE NONSTANDARD
HULL OF A NORMED SPACE
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C. WARD HENSON AND L. C.MOORE, JR.

ABSTRACT. Normed spaces which are isomorphic to subspaces of the

nonstandard hull of a given normed space are characterized. As a consequence

it is shown that a normed space is S-convex if and only if the nonstandard hull

contains no subspace isomorphic to /1  and a Banach space is super-reflexive

if and only if the nonstandard hull is reflexive. Also, embeddings of second

dual spaces into the nonstandard hull are studied.  In particular, it is shown

that the second dual space of a normed space  E  is isometric to a complemented

subspace of the nonstandard hull of E.

Preliminaries. Throughout this paper (E, p) will denote a normed space

over X, where X denotes the real,or complex numbers. By    m. we denote an

enlargement of some set-theoretical structure ill  which contains (F, p). Recall

that Tl is K-saturated over %. [12] if whenever X is in % and £ is a collec-

tion of internal subsets of    X such that card(c) < k and c has the finite in-

tersection property, then £ has nonempty intersection. Throughout this paper

we assume that    w is at least an Nj-saturated enlargement of 1.

The basic nonstandard theory of normed spaces can be found in [12] and [4].

Recall p e   E is called p-finite if    p(p) is a finite element of    R; the set of

p-finite elements of    F is denoted by fini  F).  The p-monad of 0 is defined
r

by

P„(0) = {p\p e    E and    p(p)   is infinitesimal!.

The nonstandard hull of (E, p) is the vector space E over X defined by

Ê = fmp(*E)/pp(0).

The canonical mapping of fin (  E) onto F is denoted by 77 (or by rzg if neces-

sary to avoid ambiguity). A norm p can be defined on E by letting p(x) he the

standard part of    p(p), where n(p) = x. Then (F, p) is a Banach space over X

(since    III is   N j-saturated) which contains (E, p) as a subspace by identifying

each x e E with n( x).
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The dual space E    of (E, p) is also in m  and has a nonstandard hull

(E1, p').  We denote by rr': tin .,(  E ) —» E    the canonical mapping nE>.  As

is discussed in §8 of [4] there is a natural pairing between £ and E ' which

yields an identification of (E , p ) with a subspace of the dual space of (E, p).

An important fact relating (E , p ) and (E, p)    is the following (Theorem 8.3

of [4]).

Theorem (retraction  theorem). Assume    m is K-saturated. If H is a sub-

space of E with Hamel dimension less than k and <f> £(E, 5) , then there exists

tft £ (E , p ) such that </> aBa" if/ agree on H. Moreover, ift can be chosen so

that pV) = p'(<p).

Let Ec denote the completion of E with respect to p and denote the exten-

sion of p to Ec again by p. Then (Ec, p) is contained in % and clearly

fin ( E) = fin ( Ec) n  E. Moreover, for each p £ fin ( E°) there exists r e

fin (  E)  suchthat   pip — r) is infinitesimal.  Thus n   c may be identified with

nE and (E, p) may be identified with (Ec, 8).

As further notation, we recall: it a, b £ K, then a =. b means a — b is in-

finitesimal; if a £ K is finite, then st(zz) is the standard part of a in K; if X £

511, then    [X] is the set 1  x|x £ X\ of all standard elements of    X.

1. Hyperfinite dimensional subspaces of the nonstandard hull. In this sec-

tion we consider briefly certain subspaces of (E, p)  which are important for tech-

nical reasons and which arise in a variety of contexts.   (See Definition 1.1.) In

this paper we use them in the proof of Theorem 3.4, which concerns the structure

of the subspaces of (E, p).

Let S be the collection of all finite dimensional subspaces of E. In keeping

with the usual conventions, we will refer to the elements of    S as   -finite dimen-

sional subspaces of    E. Not only is each element 5 of    Sa subspace of    E

over   K, but if A is any  -finite subset of S and A: A —> K is any internal func-

tion, then the   -finite sum

£{A(p)p|peA!

is also in S. Moreover, there is a   -finite subset B of S such that for each

q £ S there is a unique internal function   A: B —>   K such that

?=ZíA(p)p| pe B\.

Such a set B will be called a   -basis for S over    K. In particular if px, p2, •••,

p    is any finite sequence (b e N) in    E then the collection of all sums

S'LjA.p. where A., A,, •■- , A   £  K, is a   -finite dimensional subspace of    E.

Definition 1.1.  A subspace H of E is said to be hyperfinite dimensional
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if there is a    -finite dimensional subspace S of   E  such that H = n(S O fin ( E)).

An important method for obtaining hyperfinite dimensional subspaces of E

is the following. Let F y, F,, • • • be a sequence of finite dimensional subspaces

of E  and co e   N.  Then    Fu is a   -finite dimensional subspace of    E, and hence

n(  F^n fin ( £))  is a hyperfinite dimensional subspace of E. In particular, if

(E, p) is the sequence space lp over X (1 < p < oo) and F    is the subspace I An)

which consists of all sequences (x,, r„ •••) in L   with x     , = x    , = ••? 0, then1 1'       2' í> 7I+I 71 + 2 '

we will denote the hyperfinite dimensional subspace

n(*lp(oj) n tinp(*lp))

of /    by lAco) tot (o e   N. The spaces l2(a>) força £   N ~ N play an important

role in the proof of the invariant subspace theorem due to Robinson and Bernstein.

(See [14].) In the present paper we make use of the spaces ly(oj). Note that if

a e   N ~ N, then /((a)) contains /..

As was noted in the preliminaries, if Ec is the completion of E, then the non-

standard hulls E and Ec may be identified. The next result shows that if this

identification is made, then there is no ambiguity in the concept of hyperfinite di-

mensional subspace.

Lemma 1.2. Let (Ec, p) be the completion of (E, p) and let S be a -finite

dimensional subspace of Ec. Then there is a -finite dimensional subspace S '

of *E such that tt(S D fin i*Ec)) = n(S ' O fin 1*E)). Therefore E and Ec deter-

mine exactly the same hyperfinite dimensional subspaces of E = Ec.

Proof. Recall that for each n e N there is a positive real number a(n) such

that for each rz-dimensional normed space (F, rj)  with normalized basis x,, x2,

• • • , xn (i.e., r¡(Xy) = -. • = rj(xn) = 1) the inequality

*in)i:\\\<Tl(í\x)<í\\\

i = l V = l        /       z = l

holds for each Aj, A2, • • • , Xn e X. Let {py, p2, • • • , pj  be a *-basis for S over

*K, where oj e*N. Choose 8 > 0 in *R  so that 8/*a(co) is infinitesimal. Since

E is p-dense in Ec, there is an internal sequence jaj, q2, • •• , qj, in    E so that,

for each i = 1, 2, • • • , u>,   p(p . - a¿) < S.

Let À., X2, ••• , Xa be any internal sequence in    X. Then

tú J  CO \ CO

¿=i V=i      /    í=i

and hence
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(CO CO \ /   CO V

Z \Pi - Z V,) < («/*«(«)) *p( z v)•

Since S/ a(cj) =, 0 it follows that qx, q2, ••• , qa, are  -independent over    K.

That is, {«/,, a,, ••• , qj, is a   -basis for the   -finite dimensional subspace S

of    E which consists of all sums X._,A.c/. where A,, A~, ••• , A^ is an internal

sequence in    K. It follows that

(CO CO \ / CO \

Z V, - Z V,) < (s/M«))Vf Z Vi)

for A,, A,, ••• , A    an internal sequence in    K. Therefore £._,A.p. is p-finite

if and only if X . _,A.o. is p-finite, and in that case

^i^-i^W-
Thus 77(5 n fin ( Ec)) = Tr(S'n fin0(*E)), completing the proof.

We close this section with a discussion of two properties of the hyperfinite

dimensional subspaces of (E, p) which are of interest in their own right.

Theorem L3.   Each hyperfinite dimensional subspace of (E, p) is closed.

Proof.  Let H = ff(S H fin (  E)), where S is a   -finite dimensional subspace

of   E. Let ¡7r(p )i be a sequence in //  which converges in   (E, p), say to Tr(p).

Using the    Nj-saturation of    m, extend ip^i to an internal function from    N into

E.  Since   p(p   — p) =x p(n(p ) - n(p)) tor n £ N, there exists a> £   N ~ N  such

that pa£S and *p(/><a- P) =j 0. That is, rr(p) = rr(p() £ H so that z7 is closed

in (E, p).

Theorem 1.4»  //    ^1  zs K-saturated and ACE has cardinality less than k,

then A  is contained in some hyperfinite dimensional subspace of E.

Proof. Since the cardinality of A  is less than k there is a set B Ç fin 1 E)

such that the cardinality of B is less than k  and A = 77(B).  Since    111 is K-sat-

urated there is a   -finite subset B ' of    E such that B C B '. (See the proof of

Lemma 4.2 in [4].) Let S be the   -finite dimensional subspace of    E consisting

of all sums of the form SiA(p)p|p £ B   Î where A is any internal function from B

to    K. Then 77(5 O fin ( E)) is a hyperfinite dimensional subspace of E which

contains A.

2. Finite representability and super-reflexivity.

Definition 2.1. Let (F, 77) be a normed space over the field K and let A > 1.

A linear transformation  T of (F, 7/)  into (E, p) is called a X-embedding if r¡(x)
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< p(Tx) < X-r](x)  tot all x e F. If such a transformation T exists, (F, 77) is said

to be X-embeddable in (E, p).

It is easy to see that (F, rj) is A-embeddable in (E, p) if and only if there

is an invertible bounded linear transformation Q of F onto a subspace G oí E

such that Q       is a bounded linear transformation of G onto E  and  ||Q|| ||Q     ||

<A.

Definition 2.2.  Let (F, 77)  be a normed space over the field X and let X > 1.

Then (F, 77) is said to be finitely X-representable in (E, p) if for each finite di-

mensional subspace   S oí F and each e>0, (S, rj) is (A + e)-embeddable in

(E, p).

We now characterize the subspaces of the nonstandard hull (E, p) which are

isomorphic to normed spaces in 1H. It should be noted that if there is a set of

cardinality k in  MÎ, then for each normed space (F, 77) of cardinality k, there is

another normed space in M  which is isometric to (F, 77).  Therefore the following

theorem may be viewed as characterizing the subspaces of (E, p)  which are of

cardinality k, for any k which is the cardinality of an element of M. For example

the characterization applies to every separable normed space (F, 77), since %

always contains a set of cardinality  2  °.

Theorem 2.3.  Let (F, 77) be a normed space over the field K such that

(F, 77) is also contained in m. and let X > 1.  The following statements are equiv-

alent:

(i) (F, 77)  is X-embeddable in (E, p).

(ii) (F, 77) is finitely X-representable in (E, p).

(iii) (F, 77) is finitely X-representable in (E, p).

Proof. Obviously (i) implies (ii).

(ii) implies (iii): Let 5 be a finite dimensional subspace of  F and let

f > 0. By (ii)  there exists a linear map  U from S into E  such that 77(x) < p(Ux)

<(X+ (e/2)) t/(x) for all x e S. Let T = [(X + 2e/3)/(A + t/2)]U. Then

n(x) < p(Tx) < (X + 2e/3)77(x) < (X + e)r¡(x)

fot all x eS, x 4 0.

Let ¡Xj, x2, • • • , x Î be a basis for 5 and pick p., p2, • • • , p    in fin i E)

such that n(p) = Tx. for z = 1, 2, • • • , «. (zr is the canonical quotient map of

fin i E) onto E.) We will show that the following inequality holds for every

sequence Xy, X2, ••• , À    in    X:

<»      *v(ix w) < *p(¿ v«) * <*+e)*»(¿ \*4
If Aj = X2 = • • • = A   = 0, then (#) is obvious. If Xy, X2, • • • , A^ are all

finite elements of    X, then



136 C. W. HENSON AND L. C. MOORE, JR.

*/z \**i) =1 /Z «(V*<) <p(¿ ^(A.)Tx.)

< (A + e)Y¿ st(A¿)x\ =1 (A + e)*/z \ **,) -

and so (#) holds in this case. If A., A,, ••• , A    e   K are arbitrary, but not all

0, (#) is proved by applying the previous argument to the sequence A./a, A /a,

• •• , A /a, where a = maxjIA.I: i = 1, 2, — , n\.

Pulling (#) back to 51Ï, there exist yx, y2, " ' , yn in E  such that for every

choice of Aj, A2, — , A    in K

/z vJ <p(t V<) <(A+ f)/¿ V*Y
Clearly  V(S^=1A.x.) = S"=jA.y . defines a (A + f)-embedding  V of 5 into  E.

Thus (iii) follows.

(iii)  implies (i):  Suppose (iii) holds and let G be a   -finite dimensional

subspace of    F which contains    [f]  and let 8 be a positive infinitesimal. Then

(iii) implies that there exists a   -linear mapping U from G into    F such that

(4) *n(p) < *p(Up) <(\+8) *r¡(p)    for all p e G.

A function T from F into E may be defined by T(x) = 7r(l/( x)) for x £ F since

U maps    [p]  into fin Ï  E).  It follows immediately from (4)  that T is a A-em-

bedding of (F, rj) into (E, p), proving (i).

Remarks. 1. The assumption in Theorem 2.3 that the normed space (F, rj)

is in  m  can be replaced by the assumption that the cardinality of F is less than

K, provided that    Misa K-saturated enlargement of 711. Moreover, in that case

the conditions (i), (ii), (iii) of Theorem 2.3 are also equivalent to:

(iv) If H is any hyperfinite dimensional subspace of E  and EC H,

then (F, rj) is A-embeddable in (//, p).

2. A well-known theorem of Dvoretzky [2] states that if (E, p) is an infinite

dimensional normed space over R, then  l2 is finitely 1-representable in (E, p).

Therefore, in such a case the nonstandard hull (E, p) necessarily contains an

isometric copy of /,.

A number of important properties of Banach spaces (E, p)  can be stated in

terms of the class of Banach spaces which are finitely 1-representable in (E, p).

Using Theorem 2.3, such properties can often be translated into properties of the

space (E, p)  which are somewhat easier to deal with. One such property is

super-reflexivity, as introduced by James ([6], [7], [8]  and [9]).  In the present

terminology, (E, p)  is super-reflexive if every Banach space which is finitely

1-representable in (E, p) is reflexive.
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Theorem 2.4. A Banach space (E, p) is super-reflexive if and only if the

nonstandard hull (E, p) is reflexive.

Proof. From Theorem 2.3 it follows that (E, p) is finitely 1-representable

in (E, p). Therefore, if (E, p) is super-reflexive, then (E, p) is reflexive.

Conversely, suppose (E, p) is not super-reflexive, so that there is a non-

reflexive Banach space (F, 77) which is finitely 1-representable in (E, p). Ii

(F, 77) is in 111, then Theorem 2.3 implies that (F, 77) is isometric to a subspace

of (E, p) and hence that (E, p) is not reflexive. Now it follows from Theorem

8.5 of [4] that the reflexivity of (E, p) is equivalent to a certain standard con-

dition on (E, p). In particular, if some nonstandard hull of (E, p) is nonreflexive,

then the given nonstandard hull (E, p) is also nonreflexive. The proof is com-

pleted by noting that there exists an   Nj-saturated enlargement of a set-theoret-

ical structure which contains (E, p) and (F, 77) and therefore there is a nonre-

flexive nonstandard hull of (E, p).

Note that it follows from Theorem 2.4 that if (E, p) is isomorphic to a super-

reflexive Banach space, then (E, p) is also super-reflexive.

Theorem 8.5 of [4] states that if (E, p) is a real normed space, then the re-

flexivity of (E, p) is equivalent to the following standard condition:

(#)  For some r £ R, 0 < r < 1, and some positive integer n, there do not exist

finite sequences |x,, ••• , x 1 in  E and jy., • • • , y  ¡ in E    which satisfy

p(x.) = 1,       p'(y}) =1    if i, j = 1, 2, •. •, n,

r < <x¿, y>    if I < j < i < n, and

0 = <x., y>    if 1 < z'< j< n.

(If (E, p) is a complex space, then the reflexivity of (E, p) is equivalent to the

condition obtained from (#) by replacing <x., y > everywhere by Re<x¿, y •>.)

Condition (#) is one of the conditions listed as (P4) in [6]. The fact that (#) is

equivalent to the super-reflexiviry of (E, p), which follows immediately from The-

orem 2.4 (above) and Theorem 8.5 of [4], was proved in [6]. Note also that if

(E, p) satisfies (#), then (E, p)  also satisfies (#). Therefore, (E, p) is super-

reflexive if and only if (E, p) is reflexive.

3.  Embedding second dual spaces in the nonstandard hull. Luxemburg [ 13]

has shown, using Helly's Theorem, that there is a norm-preserving function T

from the second dual E    into the nonstandard hull E such that T preserves the

pairing with E'. (That is, <x, y> = <Tx, y> tot all x e E" and y e E*.) By using

the principle of local reflexivity [ll], [lO], which is a strengthening of Helly's

Theorem, the existence of such a T which is linear and satisfies Tx = x for all

x 6 E, can be proved. The precise statement of the result we use, which is
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proved in [10], is the following.

Theorem 3.1   (principle of local reflexivity). Let E be a Banach space, let

U and V be finite dimensional subspaces of E    and E    respectively and let

8 > 0. Then there is a one-to-one operator T: U—*E with Tx = x for all x £ E

O U, f(Te) = e(f) for all e £ U and f e V, and also \\T\\ • \\T~ !|| < 1 + 8.

Theorem 3.2.   There is a linear isometry T from E    into E which satisfies

Tx = x for all x £ E and <x, y> = <Tx, y> for all x £ E " and y £ E '.

Proof. Let Ec be the completion of E. Since (Ec)" = E" and Ec = E (see

the preliminaries) we may assume that E is complete. Let 5 be a   -finite dimen-

sional subspace of    E" with SO   [E"] and let S ' be a   -finite dimensional sub-

space of    E' with 5*2   [E1]. Also let 8 be any positive infinitesimal in *R.

By passing the principle of local reflexivity to   Jit it follows that there is an inter-

nal function P: S —♦   E which is linear over    K and satisfies

(i) (1 - 8) • *p"(q) < *p(Pq) < (1 + 8) • V(a) for all a £ S,

(ii)  Pq = a for all  q £S D *E and

(iii) <q, r> = <Pq, f> tor all  q £ S and reí'.

Now define T on E    by T(x) = 77(P( x)). T is obviously linear and it is an isom-

etry by (i).   If  x e E, then    x e S O   E so that Tx = x. If x e E    and y £ E',

then x e 5 and y 6S    from which it follows that <Tx, y> = st<P( x),   y> = <x,y>

which completes the proof.

There is a natural linear mapping Q: E —» E    which is defined by letting

Q(x) be the restriction of  x (as a linear functional on E ) to E , for each x £ E.

That is, for each x e E and y £ E , <x, y> = <Qx, y>. Let T: E   —» E be a lin-

ear isometry as in Theorem 3.2.  Then, for each x e E , <QTx, y> = <x, y> for

all y £ E , so that QT is the identity map on E . In particular this shows that

Q is onto and ||Q|| = 1. Also it follows that TQ is a projection (of norm 1) from

E onto T(E ). From this observation the following corollary is immediate.

Corollary 3.3.  E z's a complemented subspace of E if and only if E is a

complemented subspace of E .

When    "i\l is sufficiently saturated it is possible to strengthen Theorem 3.2

in a useful way by putting certain restrictions on the "location" of the image

space T(E ).

Theorem 3.4. Assume that *1ii is k-saturated and card(E") < k. If H is a

hyperfinite dimensional subspace of E and E Ç H, then there is a linear isometry

T from E" into H which satisfies Tx = x for all x £ E and <x, y> = <Tx, y>

for all x £ E    and y £ E .
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Proof. Let Ec be the completion of E. Since (E0)" = E" and Ec = E, Lem-

ma 1.2 implies that it suffices to prove the theorem under the assumption that E

is complete. Let S be the collection of all finite dimensional subspaces of E".

Let 5 be a   -finite dimensional subspace of    E such that n(SC\ tin (*E)) = H.

For each n > 1, F £ S, x £ E" and y £ E ' let A(n, F, x, y) be the internal set

which consists of all internal,   -linear functions P from some   -subspace of    E"

into S such that

(i) The domain of P contains    PU| xj,

(ii) for all a in the domain of P,

(1 - l/rz)V(a) < *piPq) < (1 + l/»)*p"(?)

(iii) if x £ E, then *p(P(*x) - *x) < l/n, and

(iv) |<*x, *y>- <P(**). *y>l < 1/«.

Assume that P is in the intersection of all the sets A(n, F, x, y), for n > 1,

F £ S, x e E" and y e E '. Then    [E"] is contained in the domain of P; more-

over, by (ii), P( x) e fin ( E) for each x e E". Thus we may define T on E ' by

T(x) = 7t(P( x)). T is obviously linear and it is an isometry by the conditions (ii).

By conditions (iii), for each x e E,   p(P( x) -   x) =y 0, so that T(x) = n(P( x)) =

n( x) = x. If x e E    and y e E , then the conditions (iv) imply that <Tx , y> =

st<P(*x), *y> = st<*x, *y> = <x, y>.  Finally, P maps *[E"] into S H finp(*F)  so

that T maps E    into /i. Therefore T has the desired properties.

It remains to show that the intersection of the sets A(n, F, x, y) is nonempty.

We need only show that the collection

ÍA(«, F, x, y)\ n> l, F e S, x e E" and y e E']

has the finite intersection property, since the collection has fewer than k ele-

ments and   % is K-saturated. Let Fy, ••• , F    be elements of S, Xy, ••• , xr

e E , y y, • ' • , y,  e E    and n > 1. Let F be the finite dimensional subspace of

E ' which is spanned by F y U- • • UFfflU {xy, ••• , xf, y y, • • • , yk]. By the prin-

ciple of local reflexivity (Theorem 3.1) there is a linear map Q: F —» E such that

(a) (1 - l/2n)p"(x) < p(Qx) < (1 + l/2rz)p"(x) for all x e F,

(b) Qx = x for all  x e FOE, and

(c) <x, y > = <Qx, y > tot all x € F and 1 < / < k.

Suppose that z., ••• , z    is a basis for F over X, and choose py, ••• , ps £S

so that n(p.) = Q(z.) for 1 < i < S. We may define an internal function P from

F into    E by

for each sequence Aj, ••• , As in    X. Then P is linear over    X. Also, if Aj,

• '• , Xs ate all finite elements of    X, then
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^ZVf-î^e^i

Therefore, from properties (a), (b), and (c) above follow these properties of P:

(a') (1 - l/n)*p"(q) < *f*Pq)<(l + l/n)*p"(q) for all q £ *F,

(V ) *p(P(*x.) - *x.) < 1/b if 1 < i < r and x. e E, and

(c')  |<*x., *y> - <P(*xt), *y>\ < 1/b if  1 < i < r and  1 < ; < ¿.

This proves that the collection of sets A(b, F, x, y) has the finite intersection

property and completes the proof.

Theorem 3.5. Assume that Tïi is K-saturated. If (F, rj) is a normed space

over K and card(F ) < k, then every X-embedding of (F, rj) into (E, p) can be

extended to a X-embedding of (F", r¡") into (E, p).

Proof. Let T be any A-embedding of F into E. Let {xjci £ I\ be a Hamel

basis for F over K. For each a £ /, choose pa efini E)  such that 7r(pa) =

T(xa). Since card(/) < k and    /1Ï is K-saturated, we may extend the function ip0l

to an internal function from    / into    E, which we shall still denote by ipai.

For each n £   N let A    be the internal set which consists of all*-finite sub-
n

sets ] of    I such that, for each internal function  y: ] —► K,

(l-l/n)*JZYa^a\<*p(ZyaPa\

<A(1+1/b)*t,/z   Ya*Xa\

Note that if /  isa finite subset of /, then    / e A     for each standard integer n.

Again using the K-saturation of    m, there must exist u> £   N ~ N  such that    /

eA^ for all finite subsets /  of /.  Moreover, again by K-saturation, there must

exist a   -finite subset /0  of    /  such that JQ £ Au and    [/] Ç JQ.

Now let S be the   -finite dimensional subspace of    F which is spanned over

*K by i*xj a £]0] and let H = rr(S n fin^*F)). Observe that F ÇH. By Theo-

rem 3.4 there is a linear isometry Q: F"—> // which satisfies Qx = x for x e F.

Define P: 5 ->*E by

YZ   X.**aV      Z   yaPa
\aej0 )      aeJQ

for each internal function y: /„ —»   K. Since i xa| a £ ]0\ is a   -basis for S,

P is a well-defined,   -linear map.  By the selection of }Q,

(1 - 1/oSfr^q) < *p(Pq) < A(l + 1/ofrfi.q)

for all q € S. Therefore we may define P: H —* E by
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P(x) = n(P(q))    where x = 77(a),  q £ S.

Thus defined, Pisa A-embedding of H into E. Moreover, if a e /, then P(xa)

= zr(P(*xa)) = 7z(z7a) = T(xa)% Therefore, for each x £ F, P(x) = T(x). It follows

that the composite mapping PQ is a A-embedding of F into E which extends

T.

Corollary 3.6. Assume that   1\[ is K-saturated. If F is a Banach space

which is isomorphic to a complemented subspace of E and card(F ) < k, then

F is complemented in F .

Proof. Let T: F —• E be an isomorphism of F onto a complemented subspace of E.

It may be assumed that T is a A-embedding for some  A > 1.   By Theorem 3.5, T

may be extended to a A-embedding T oí F    into E. Then T(F) = T(F) is com-

plemented in  T(F ), so that F is complemented in F .

Remark.  As an example of the use of Corollary 3.6, note that if *)li is

(2 ^>) -saturated, then no complemented subspace of E can be isomorphic to

4. B-convexity. In this section we consider another property of normed

spaces (E, p), B-convexity, which is expressible in terms of the class of normed

spaces finitely 1-representable in (E, p). In Lemma 4.2 we give a nonstandard

characterization of B-convexity and in Theorem 4.3 we use the methods developed

in this paper to prove a few known facts about B-convexity. It should be noted

that throughout this section the sequence spaces /,   and ly(n)  are always taken

over the same field X as E.

Definition 4.1.  A normed space (E, p) is said to be B-convex if for some

positive integer n  and some 8 > 0  there do not exist x., • • • , x    in  E  such

that p(x.) = 1 for i = 1, • • • , n  and

4 1Z rçW*,) >n-

for all functions 77 mapping jl, • •• , zzi into ¡1, - ll.

The concept of B-convexity was introduced by Beck [l] who showed that a

Banach space (E, p) is B-convex if and only if a certain strong law of large

numbers is valid for E-valued random variables. Giesy showed that (E, p) is B-

convex if and only if for some positive integer n and some 8 > 0, /,(«) is not

(1 + S)-embeddable in (E, p). (Theorem 5 and Lemma 6 of [3].) If for some 8 > 0

the space ly(n) is not (1 + <5)-embeddable in (E, p), then (E, p) is said to be

uniformly non-ly(n) [5]. Thus (E, p) is B-convex if and only if it is uniformly

non-/j(rz) for some n, by Giesy's results. A uniformly non-/j(2) Banach space

is also called uniformly nonsquare.
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Lemma 4.2. The following are equivalent.

(i) (E, p) is B-convex.

(ii) (E, p) is B-convex.

(iii) (E, p) ¿foes bo/ contain an isometric copy of /..

(iv) (E, p) aWs not contain an isomorphic copy of /,.

Proof. The condition which is satisfied when (E, p) is B-convex can be

passed to    IK  and the resulting property of (  E,    p)  clearly implies that (E, p)

is also B-convex. Conversely, the B-convexity of (E, p) implies that (E, p) is

B-convex, since (E, p) is a subspace of (E, p). This shows that conditions (i)

and (ii) are equivalent.

If (E, p) is B-convex, then it is uniformly non-/¡(b) for some n and therefore

it cannot contain a subspace isometric to /,. Conversely, if (E, p) is not B-con-

vex, then it contains an isometric copy of lx(n) for each n, by Theorem 2 3. It

follows that for a> £   N ~ N, (E, p) contains a subspace isometric to /j(o>) and

hence it contains a subspace isometric to /,. This shows that (ii) and (iii) are

equivalent.

Obviously (iv) implies (iii).  To complete the proof we prove (ii) implies (iv)

by noting that a Banach space isomorphic to /,  is not B-convex.

An important conjecture [3], [5] is that every B-convex Banach space is re-

flexive. Using Lemma 4.2 this conjecture may be given the following equivalent

formulation: a nonstandard hull (E, p)  is reflexive if and only if (E, p)  contains

no subspace isomorphic to /,.

In the following theorem we list a few known results on B-convex spaces with

some brief comments on how these results can be obtained using the nonstandard

characterization of B-convexity which is containedin   Lemma 4.2.

Theorem 4.3. (i) Every uniformly convex normed space is B-convex [3].

(ii) // a normed space is isomorphic to a B-convex space, then it is B-convex

[1], [3].

(iii) A normed space (E, p) is B-convex if and only if (E , p ) is B-convex

[31.
(iv) A normed space (E, p) is B-convex if and only if (E , p ) is B-convex

[33.

Proof, (i) If (E, p) is uniformly convex, then (E, p) is reflexive (Theorem

8.7 of [4]) and so (E, p)  cannot contain an isometric copy of /.. Thus (E, p) is

B-convex by Lemma 4.2.

(ii) This follows immediately from the equivalence of (i) and (iv) in Lemma

4.2 and the fact that isomorphic normed spaces have isomorphic nonstandard hulls.

(iii) This follows from Lemma 4.2 and the fact that (E , p ) can be embedded

in (E, p) (Theorem 3.2).
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(iv) By (iii) it is sufficient to show that if (E, p) is B-convex, then (E*, p)

is B-convex. If (E*, p') is not B-convex then (E*, p') contains an isometric

copy H of ly. The dual space of H is isometric to l^. Hence for each n and

z5 > 0 there is a (1 + §)-embedding of ly(n) into the dual space of (E , p ).

Using the retraction theorem (see the preliminaries) it can be shown that for each

positive integer n and each 8 > 0 there is a   (1 + S)-embedding of l.(n) into

(E", p"). Thus (E", p ') is not B-convex so (E", p ) is not B-convex by Lemma

42. By (iii) it follows that (E, p) is not B-convex, completing the proof.

Note (Added January 1974). It has been announced by R. C. James [Notices

Amer. Math. Soc. 21 (1974), A-188] that there exists a B-convex Banach space

which is not reflexive.
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