Complementation for right ideals in generalized Hilbert algebras
HTML articles powered by AMS MathViewer
- by John Phillips
- Trans. Amer. Math. Soc. 197 (1974), 409-417
- DOI: https://doi.org/10.1090/S0002-9947-1974-0385579-X
- PDF | Request permission
Abstract:
Let $\mathfrak {A}$ be a generalized Hilbert algebra and let $\mathcal {J}$ be a closed right ideal of $\mathfrak {A}$. Let ${\mathcal {J}^ \bot }$ denote the pre-Hilbert space orthogonal complement of $\mathcal {J}$ in $\mathfrak {A}$. The problem investigated in this paper is: for which algebras $\mathfrak {A}$ is it true that $\mathfrak {A} = \mathcal {J} \oplus {\mathcal {J}^ \bot }$ for every closed right ideal $\mathcal {J}$ of $\mathfrak {A}$? In the case that $\mathfrak {A}$ is achieved, a slightly stronger property is characterized and these characterizations are then used to investigate some interesting examples.References
- W. Ambrose, The $L_2$-system of a unimodular group. I, Trans. Amer. Math. Soc. 65 (1949), 27–48. MR 28322, DOI 10.1090/S0002-9947-1949-0028322-1
- F. Combes, Poids associé à une algèbre hilbertienne à gauche, Compositio Math. 23 (1971), 49–77 (French). MR 288590
- P. A. Fillmore and D. M. Topping, Operator algebras generated by projections, Duke Math. J. 34 (1967), 333–336. MR 209855, DOI 10.1215/S0012-7094-67-03436-9
- Marc A. Rieffel, Square-integrable representations of Hilbert algebras, J. Functional Analysis 3 (1969), 265–300. MR 0244780, DOI 10.1016/0022-1236(69)90043-3
- Masamichi Takesaki, Conditional expectations in von Neumann algebras, J. Functional Analysis 9 (1972), 306–321. MR 0303307, DOI 10.1016/0022-1236(72)90004-3 —, Tomita’s theory of modular Hilbert algebras and its applications, Lecture Notes in Math., vol. 128, Springer-Verlag, Berlin and New York, 1970. MR 42 #5061.
- Bertram Yood, Hilbert algebras as topological algebras, Ark. Mat. 12 (1974), 131–151. MR 380429, DOI 10.1007/BF02384750
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 197 (1974), 409-417
- MSC: Primary 46K15
- DOI: https://doi.org/10.1090/S0002-9947-1974-0385579-X
- MathSciNet review: 0385579