The Wedderburn principal theorem for a generalization of alternative algebras
HTML articles powered by AMS MathViewer
- by Harry F. Smith
- Trans. Amer. Math. Soc. 198 (1974), 139-154
- DOI: https://doi.org/10.1090/S0002-9947-1974-0352187-6
- PDF | Request permission
Abstract:
A generalized alternative ring I is a nonassociative ring $R$ in which the identities $(wx,y,z) + (w,x,[y,z]) - w(x,y,z) - (w,y,z)x;([w,x],y,z) + (w,x,yz) - y(w,x,z) - (w,x,y)z$; and $(x,x,x)$ are identically zero. It is here demonstrated that if $A$ is a finite-dimensional algebra of this type over a field $F$ of characteristic # 2, 3, then $A$ a nilalgebra implies $A$ is nilpotent. A generalized alternative ring II is a nonassociative ring $R$ in which the identities $(wx,y,z) + (w,x,[y,z]) - w(x,y,z) - (w,y,z)x$ and $(x,y,x)$ are identically zero. Let $A$ be a finite-dimensional algebra of this type over a field $F$ of characteristic # 2. Then it is here established that (1) $A$ a nilalgebra implies $A$ is nilpotent; (2) $A$ simple with no nonzero idempotent other than 1 and $F$ algebraically closed imply $A$ itself is a field; and (3) the standard Wedderburn principal theorem is valid for $A$.References
- A. Adrian Albert, Structure of algebras, American Mathematical Society Colloquium Publications, Vol. XXIV, American Mathematical Society, Providence, R.I., 1961. Revised printing. MR 0123587
- A. A. Albert, Power-associative rings, Trans. Amer. Math. Soc. 64 (1948), 552–593. MR 27750, DOI 10.1090/S0002-9947-1948-0027750-7
- Nathan Jacobson, Structure and representations of Jordan algebras, American Mathematical Society Colloquium Publications, Vol. XXXIX, American Mathematical Society, Providence, R.I., 1968. MR 0251099
- Erwin Kleinfeld, Generalization of alternative rings. I, II, J. Algebra 18 (1971), 304–325; ibid. 18 (1971), 326–339. MR 0274545, DOI 10.1016/0021-8693(71)90063-9
- Erwin Kleinfeld, Generalization of alternative rings. I, II, J. Algebra 18 (1971), 304–325; ibid. 18 (1971), 326–339. MR 0274545, DOI 10.1016/0021-8693(71)90063-9
- Erwin Kleinfeld and Louis A. Kokoris, Flexible algebras of degree one, Proc. Amer. Math. Soc. 13 (1962), 891–893. MR 141691, DOI 10.1090/S0002-9939-1962-0141691-9
- Kevin McCrimmon, Structure and representations of noncommutative Jordan algebras, Trans. Amer. Math. Soc. 121 (1966), 187–199. MR 188261, DOI 10.1090/S0002-9947-1966-0188261-2
- D. J. Rodabaugh, On the Wedderburn principal theorem, Trans. Amer. Math. Soc. 138 (1969), 343–361. MR 330240, DOI 10.1090/S0002-9947-1969-0330240-9
- R. D. Schafer, The Wedderburn principal theorem for alternative algebras, Bull. Amer. Math. Soc. 55 (1949), 604–614. MR 29895, DOI 10.1090/S0002-9904-1949-09259-5
- R. D. Schafer, Noncommutative Jordan algebras of characteristic $0$, Proc. Amer. Math. Soc. 6 (1955), 472–475. MR 70627, DOI 10.1090/S0002-9939-1955-0070627-0 —, On noncommutative Jordan algebras, Proc. Amer. Math. Soc. 9 (1958), 110-117. MR 21 #2677.
- R. D. Schafer, Restricted noncommutative Jordan algebras of characteristic $p$, Proc. Amer. Math. Soc. 9 (1958), 141–144. MR 103915, DOI 10.1090/S0002-9939-1958-0103915-2 —, An introduction to non-associative algebras, Pure and Appl. Math., vol. 22, Academic Press, New York, 1966. MR 35 #1643.
- R. D. Schafer, Standard algebras, Pacific J. Math. 29 (1969), 203–223. MR 244332
- R. D. Schafer, Generalized standard algebras, J. Algebra 12 (1969), 386–417. MR 283035, DOI 10.1016/0021-8693(69)90039-8 H. F. Smith, Ph.D. dissertation, University of Iowa, Iowa City, 1972.
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 198 (1974), 139-154
- MSC: Primary 17A30
- DOI: https://doi.org/10.1090/S0002-9947-1974-0352187-6
- MathSciNet review: 0352187