Geometry of Lebesgue-Bochner function spaces—smoothness
HTML articles powered by AMS MathViewer
- by I. E. Leonard and K. Sundaresan
- Trans. Amer. Math. Soc. 198 (1974), 229-251
- DOI: https://doi.org/10.1090/S0002-9947-1974-0367652-5
- PDF | Request permission
Abstract:
There exist real Banach spaces $E$ such that the norm in $E$ is of class ${C^\infty }$ away from zero; however, for any $p,1 \leqslant p \leqslant \infty$, the norm in the Lebesgue-Bochner function space ${L_p}(E,\mu )$ is not even twice differentiable away from zero. The main objective of this paper is to give a complete determination of the order of differentiability of the norm function in this class of Banach spaces.References
- S. Banach, Théorie des opérations linéaires, Monografie Mat., PWN, Warsaw, 1932.
S. Banach and S. Saks, Sur la convergence forte dans les champs ${L^p}$, Studia Math. 2 (1930), 51-57.
S. Bochner, Integration von Funktionen, deren Werte die Elemente eines Vektorraumes sind, Fund. Math. 20 (1933), 262-276.
- S. Bochner and A. E. Taylor, Linear functionals on certain spaces of abstractly-valued functions, Ann. of Math. (2) 39 (1938), no. 4, 913–944. MR 1503445, DOI 10.2307/1968472
- Robert Bonic and John Frampton, Differentiable functions on certain Banach spaces, Bull. Amer. Math. Soc. 71 (1965), 393–395. MR 172084, DOI 10.1090/S0002-9904-1965-11310-6
- Robert Bonic and John Frampton, Smooth functions on Banach manifolds, J. Math. Mech. 15 (1966), 877–898. MR 0198492
- Henri Cartan, Differential calculus, Hermann, Paris; Houghton Mifflin Co., Boston, Mass., 1971. Exercises by C. Buttin, F. Rideau and J. L. Verley; Translated from the French. MR 0344032
- Dennis F. Cudia, The geometry of Banach spaces. Smoothness, Trans. Amer. Math. Soc. 110 (1964), 284–314. MR 163143, DOI 10.1090/S0002-9947-1964-0163143-9
- Mahlon M. Day, Some more uniformly convex spaces, Bull. Amer. Math. Soc. 47 (1941), 504–507. MR 4068, DOI 10.1090/S0002-9904-1941-07499-9 —, Normed linear spaces, 2nd rev. ed., Academic Press, New York; Springer-Verlag, Berlin, 1962. MR 26 #2847.
- J. Dieudonné, Foundations of modern analysis, Pure and Applied Mathematics, Vol. X, Academic Press, New York-London, 1960. MR 0120319
- N. Dinculeanu, Vector measures, Hochschulbücher für Mathematik, Band 64, VEB Deutscher Verlag der Wissenschaften, Berlin, 1966. MR 0206189
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- R. E. Edwards, Functional analysis. Theory and applications, Holt, Rinehart and Winston, New York-Toronto-London, 1965. MR 0221256 G. Köthe, Topologische linear Räume. I, Die Grundlehren der math. Wissenschaften, Band 107, Springer-Verlag, Berlin, 1960; English transl., Die Grundlehren der math. Wissenschaften, Band 159, Springer-Verlag, New York, 1969. MR 24 #A411; 40 #1750.
- J. Kurzweil, On approximation in real Banach spaces, Studia Math. 14 (1954), 214–231 (1955). MR 68732, DOI 10.4064/sm-14-2-214-231 S. Mazur, Über konvexe Mengen in linearen normierten Räumen, Studia Math. 4 (1933), 70-84.
- E. J. McShane, Linear functionals on certain Banach spaces, Proc. Amer. Math. Soc. 1 (1950), 402–408. MR 36448, DOI 10.1090/S0002-9939-1950-0036448-5
- Kondagunta Sundaresan, Smooth Banach spaces, Math. Ann. 173 (1967), 191–199. MR 218876, DOI 10.1007/BF01361710
- K. Sundaresan, Spaces of continuous functions into a Banach space, Studia Math. 48 (1973), 15–22. MR 331042, DOI 10.4064/sm-48-1-15-22
- K. Sundaresan, Some geometric properties of the unit cell in spaces $C(X;\,B)$, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 19 (1971), 1007–1012 (English, with Russian summary). MR 303273
- M. M. Vainberg, Variational methods for the study of nonlinear operators, Holden-Day, Inc., San Francisco, Calif.-London-Amsterdam, 1964. With a chapter on Newton’s method by L. V. Kantorovich and G. P. Akilov. Translated and supplemented by Amiel Feinstein. MR 0176364
- John Wells, Differentiable functions on $c_{0}$, Bull. Amer. Math. Soc. 75 (1969), 117–118. MR 234273, DOI 10.1090/S0002-9904-1969-12167-1
- Sadayuki Yamamuro, Differential calculus in topological linear spaces, Lecture Notes in Mathematics, Vol. 374, Springer-Verlag, Berlin-New York, 1974. MR 0488118
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 198 (1974), 229-251
- MSC: Primary 46E40; Secondary 58C20
- DOI: https://doi.org/10.1090/S0002-9947-1974-0367652-5
- MathSciNet review: 0367652