A characterization of the invariant measures for an infinite particle system with interactions. II
HTML articles powered by AMS MathViewer
- by Thomas M. Liggett
- Trans. Amer. Math. Soc. 198 (1974), 201-213
- DOI: https://doi.org/10.1090/S0002-9947-1974-0375531-2
- PDF | Request permission
Abstract:
Let $p(x,y)$ be the transition function for a symmetric, irreducible Markov chain on the countable set $S$. Let $\eta (t)$ be the infinite particle system on $S$ with the simple exclusion interaction and one-particle motion determined by $p$. The present author and Spitzer have determined all of the invariant measures of $\eta (t)$, and have obtained ergodic theorems for $\eta (t)$, under two different sets of assumptions. In this paper, these problems are solved in the remaining case.References
- Richard Holley, A class of interactions in an infinite particle system, Advances in Math. 5 (1970), 291–309 (1970). MR 268960, DOI 10.1016/0001-8708(70)90035-6
- John G. Kemeny, J. Laurie Snell, and Anthony W. Knapp, Denumerable Markov chains, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR 0207042
- Thomas M. Liggett, A characterization of the invariant measures for an infinite particle system with interactions, Trans. Amer. Math. Soc. 179 (1973), 433–453. MR 326867, DOI 10.1090/S0002-9947-1973-0326867-1
- Thomas M. Liggett, Existence theorems for infinite particle systems, Trans. Amer. Math. Soc. 165 (1972), 471–481. MR 309218, DOI 10.1090/S0002-9947-1972-0309218-7
- Frank Spitzer, Interaction of Markov processes, Advances in Math. 5 (1970), 246–290 (1970). MR 268959, DOI 10.1016/0001-8708(70)90034-4
- Frank Spitzer, Recurrent random walk of an infinite particle system, Trans. Amer. Math. Soc. 198 (1974), 191–199. MR 375533, DOI 10.1090/S0002-9947-1974-0375533-6
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 198 (1974), 201-213
- MSC: Primary 60K35
- DOI: https://doi.org/10.1090/S0002-9947-1974-0375531-2
- MathSciNet review: 0375531