A Prüfer transformation for the equation of the vibrating beam
HTML articles powered by AMS MathViewer
- by D. O. Banks and G. J. Kurowski
- Trans. Amer. Math. Soc. 199 (1974), 203-222
- DOI: https://doi.org/10.1090/S0002-9947-1974-0350111-3
- PDF | Request permission
Abstract:
In this paper, the oscillatory properties of the eigenfunctions of an elastically constrained beam are studied. The method is as follows. The eigenfunction and its first three derivatives are considered as a four-dimensional vector, $(u,u’,pu'',(pu'')’)$. This vector is projected onto two independent planes and polar coordinates are introduced in each of these two planes. The resulting transformation is then used to study the oscillatory properties of the eigenfunctions and their derivatives in a manner analogous to the use of the Prüfer transformation in the study of second order Sturm-Liouville systems. This analysis yields, for a given set of boundary conditions, the number of zeros of each of the derivatives, $u’,pu'',(pu'')’$ and the relation of these zeros to the $n - 1$ zeros of the $n$th eigenfunction. The method also can be used to establish comparison theorems of a given type.References
- D. O. Banks and G. J. Kurowski, Computation of eigenvalues for vibrating beams by use of a Prüfer transformation, SIAM J. Numer. Anal. 10 (1973), 918–932. MR 343634, DOI 10.1137/0710078 L. Collatz, Eigenwerteprobleme und ihrer numerische Behandlung, Chelsea, New York, 1948. MR 8, 514. R. Courant and D. Hilbert, Methoden der mathematischen Physik. Vol. 1, Springer, Berlin, 1931; English transl., Interscience, New York, 1953. MR 16, 426.
- Nelson Dunford and Jacob T. Schwartz, Linear operators. Part II: Spectral theory. Self adjoint operators in Hilbert space, Interscience Publishers John Wiley & Sons, New York-London, 1963. With the assistance of William G. Bade and Robert G. Bartle. MR 0188745
- Einar Hille, Lectures on ordinary differential equations, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR 0249698
- S. A. Janczewsky, Oscillation theorems for the differential boundary value problems of the fourth order, Ann. of Math. (2) 29 (1927/28), no. 1-4, 521–542. MR 1502859, DOI 10.2307/1968021 R. Jentzsch, Über Integralgleichungen mit positiven kern, J. Reine Angew. Math. 141 (1912), 235-244.
- Kurt Kreith, Comparison theorems for constrained rods, SIAM Rev. 6 (1964), 31–36. MR 160963, DOI 10.1137/1006004
- Walter Leighton and Zeev Nehari, On the oscillation of solutions of self-adjoint linear differential equations of the fourth order, Trans. Amer. Math. Soc. 89 (1958), 325–377. MR 102639, DOI 10.1090/S0002-9947-1958-0102639-X
- Frédéric Riesz and Béla Sz.-Nagy, Leçons d’analyse fonctionnelle, Akadémiai Kiadó, Budapest, 1953 (French). 2ème éd. MR 0056821
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 199 (1974), 203-222
- MSC: Primary 34C10
- DOI: https://doi.org/10.1090/S0002-9947-1974-0350111-3
- MathSciNet review: 0350111