Conjugate points, triangular matrices, and Riccati equations
HTML articles powered by AMS MathViewer
- by Zeev Nehari
- Trans. Amer. Math. Soc. 199 (1974), 181-198
- DOI: https://doi.org/10.1090/S0002-9947-1974-0350113-7
- PDF | Request permission
Abstract:
Let $A$ be a real continuous $n \times n$ matrix on an interval $\Gamma$, and let the $n$-vector $x$ be a solution of the differential equation $x’ = Ax$ on $\Gamma$. If $[\alpha ,\beta ] \in \Gamma ,\beta$ is called a conjugate point of $\alpha$ if the equation has a nontrivial solution vector $x = ({x_1}, \ldots ,{x_n})$ such that ${x_1}(\alpha ) = \ldots = {x_k}(\alpha ) = {x_{k + 1}}(\beta ) = \ldots = {x_n}(\beta ) = 0$ for some $k \in [1,n - 1]$. It is shown that the absence on $({t_1},{t_2})$ of a point conjugate to ${t_1}$ with respect to the equation $x’ = Ax$ is equivalent to the existence on $({t_1},{t_2})$ of a continuous matrix solution $L$ of the nonlinear differential equation $L’ = {[L{A^ \ast }{L^{ - 1}}]_{{\tau _0}}}L$ with the initial condition $L({t_1}) = I$, where ${[B]_{{\tau _0}}}$ denotes the matrix obtained from the $n \times n$ matrix $B$ by replacing the elements on and above the main diagonal by zeros. This nonlinear equation—which may be regarded as a generalization of the Riccati equation, to which it reduces for $n = 2$—can be used to derive criteria for the presence or absence of conjugate points on a given interval.References
- F. R. Gantmacher, Matrizenrechnung. II. Spezielle Fragen und Anwendungen, Hochschulbücher für Mathematik, Band 37, VEB Deutscher Verlag der Wissenschaften, Berlin, 1959 (German). MR 0107647
- Maurice Hanan, Oscillation criteria for third-order linear differential equations, Pacific J. Math. 11 (1961), 919–944. MR 145160, DOI 10.2140/pjm.1961.11.919
- G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge, at the University Press, 1952. 2d ed. MR 0046395
- Philip Hartman and Aurel Wintner, On disconjugate differential systems, Canadian J. Math. 8 (1956), 72–81. MR 74595, DOI 10.4153/CJM-1956-012-4
- W. J. Kim, Disconjugacy and disfocality of differential systems, J. Math. Anal. Appl. 26 (1969), 9–19. MR 236464, DOI 10.1016/0022-247X(69)90172-3
- A. Lasota and C. Olech, An optimal solution of Nicoletti’s boundary value problem, Ann. Polon. Math. 18 (1966), 131–139. MR 204742, DOI 10.4064/ap-18-2-131-139
- A. Ju. Levin, Some questions on the oscillation of solutions of linear differential equations, Dokl. Akad. Nauk SSSR 148 (1963), 512–515 (Russian). MR 0146450
- A. Ju. Levin, On the distribution of zeros of solutions of a linear differential equation, Dokl. Akad. Nauk SSSR 156 (1964), 1281–1284 (Russian). MR 0164079
- A. Ju. Levin, The non-oscillation of solutions of the equation $x^{(n)}+p_{1}(t)x^{(n-1)}+\cdots +p_{n} (t)x=0$, Uspehi Mat. Nauk 24 (1969), no. 2 (146), 43–96 (Russian). MR 0254328
- Zeev Nehari, Oscillation theorems for systems of linear differential equations, Trans. Amer. Math. Soc. 139 (1969), 339–347. MR 239185, DOI 10.1090/S0002-9947-1969-0239185-6
- Zeev Nehari, Nonoscillation and disconjugacy of systems of linear differential equations, J. Math. Anal. Appl. 42 (1973), 237–254. MR 320437, DOI 10.1016/0022-247X(73)90136-4
- G. Pólya, On the mean-value theorem corresponding to a given linear homogeneous differential equation, Trans. Amer. Math. Soc. 24 (1922), no. 4, 312–324. MR 1501228, DOI 10.1090/S0002-9947-1922-1501228-5
- Binyamin Schwarz, Norm conditions for disconjugacy of complex differential systems, J. Math. Anal. Appl. 28 (1969), 553–568. MR 249722, DOI 10.1016/0022-247X(69)90008-0
- Thomas L. Sherman, Properties of solutions of $n\textrm {th}$ order linear differential equations, Pacific J. Math. 15 (1965), 1045–1060. MR 185185, DOI 10.2140/pjm.1965.15.1045
- C. A. Swanson, Comparison and oscillation theory of linear differential equations, Mathematics in Science and Engineering, Vol. 48, Academic Press, New York-London, 1968. MR 0463570
- H. W. Turnbull and A. C. Aitken, An introduction to the theory of canonical matrices, Dover Publications, Inc., New York, 1961. MR 0123581
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 199 (1974), 181-198
- MSC: Primary 34C10
- DOI: https://doi.org/10.1090/S0002-9947-1974-0350113-7
- MathSciNet review: 0350113