The category of generalized Lie groups
HTML articles powered by AMS MathViewer
- by Su Shing Chen and Richard W. Yoh
- Trans. Amer. Math. Soc. 199 (1974), 281-294
- DOI: https://doi.org/10.1090/S0002-9947-1974-0352334-6
- PDF | Request permission
Abstract:
We consider the category $\Gamma$ of generalized Lie groups. A generalized Lie group is a topological group $G$ such that the set $LG = Hom({\mathbf {R}},G)$ of continuous homomorphisms from the reals ${\mathbf {R}}$ into $G$ has certain Lie algebra and locally convex topological vector space structures. The full subcategory ${\Gamma ^r}$ of $r$-bounded ($r$ positive real number) generalized Lie groups is shown to be left complete. The class of locally compact groups is contained in $\Gamma$. Various properties of generalized Lie groups $G$ and their locally convex topological Lie algebras $LG = Hom({\mathbf {R}},G)$ are investigated.References
- Garrett Birkhoff, Analytical groups, Trans. Amer. Math. Soc. 43 (1938), no. 1, 61–101. MR 1501934, DOI 10.1090/S0002-9947-1938-1501934-4
- Su Shing Chen and Sidney A. Morris, Varieties of topological groups generated by Lie groups, Proc. Edinburgh Math. Soc. (2) 18 (1972/73), 49–53. MR 323958, DOI 10.1017/S0013091500026146
- Su Shing Chen and Richard W. Yoh, Varieties of generalized Lie groups, Colloq. Math. 31 (1974), 51–55. MR 376954, DOI 10.4064/cm-31-1-51-55
- Claude Chevalley, Theory of Lie groups. I, Princeton University Press, Princeton, N. J., 1946 1957. MR 0082628, DOI 10.1515/9781400883851
- P. M. Cohn, Lie groups, Cambridge Tracts in Mathematics and Mathematical Physics, No. 46, Cambridge University Press, New York, N.Y., 1957. MR 0103940
- P. M. Cohn, Universal algebra, Harper & Row, Publishers, New York-London, 1965. MR 0175948
- E. B. Dynkin, Normed Lie algebras and analytic groups, Uspehi Matem. Nauk (N.S.) 5 (1950), no. 1(35), 135–186 (Russian). MR 0035285
- James Eells Jr., A setting for global analysis, Bull. Amer. Math. Soc. 72 (1966), 751–807. MR 203742, DOI 10.1090/S0002-9904-1966-11558-6
- Sigurđur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR 0145455
- G. Hochschild, The structure of Lie groups, Holden-Day, Inc., San Francisco-London-Amsterdam, 1965. MR 0207883 K. Hofmann, Introduction to the theory of compact groups, Tulane Univ. Lecture Notes, 1968.
- Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0143793
- Richard K. Lashof, Lie algebras of locally compact groups, Pacific J. Math. 7 (1957), 1145–1162. MR 92104, DOI 10.2140/pjm.1957.7.1145
- Detlef Laugwitz, Über unendliche kontinuierliche Gruppen. I. Grundlagen der Theorie; Untergruppen, Math. Ann. 130 (1955), 337–350 (German). MR 75535, DOI 10.1007/BF01343900
- Detlef Laugwitz, Über unendliche kontinuierliche Gruppen. II. Strukturtheorie lokal-Banachscher Gruppen, Bayer. Akad. Wiss. Math.-Nat. Kl. S.-B. 1956 (1956), 261–286 (1957) (German). MR 0090004
- Michel Lazard and Jacques Tits, Domaines d’injectivité de l’application exponentielle, Topology 4 (1965/66), 315–322 (French). MR 185048, DOI 10.1016/0040-9383(66)90030-9
- Bernhard Maissen, Lie-Gruppen mit Banachräumen als Parameterräume, Acta Math. 108 (1962), 229–270 (German). MR 142693, DOI 10.1007/BF02545768
- Barry Mitchell, Theory of categories, Pure and Applied Mathematics, Vol. XVII, Academic Press, New York-London, 1965. MR 0202787
- Deane Montgomery and Leo Zippin, Topological transformation groups, Interscience Publishers, New York-London, 1955. MR 0073104 G. D. Mostow, Lectures on Lie groups and Lie algebras, Yale University Lecture Notes. Séminaire “Sophus Lie” de l’École Normale Supérieure, 1954/55, Théorie des algèbres de Lie, Topologie des groupes de Lie, Secrétariat mathématique, Paris, 1955. MR 17, 384.
- Jean-Pierre Serre, Lie algebras and Lie groups, W. A. Benjamin, Inc., New York-Amsterdam, 1965. Lectures given at Harvard University, 1964. MR 0218496
- François Trèves, Topological vector spaces, distributions and kernels, Academic Press, New York-London, 1967. MR 0225131
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 199 (1974), 281-294
- MSC: Primary 22E65
- DOI: https://doi.org/10.1090/S0002-9947-1974-0352334-6
- MathSciNet review: 0352334