Chapman-Enskog-Hilbert expansion for the Ornstein-Uhlenbeck process and the approximation of Brownian motion
HTML articles powered by AMS MathViewer
- by Richard S. Ellis
- Trans. Amer. Math. Soc. 199 (1974), 65-74
- DOI: https://doi.org/10.1090/S0002-9947-1974-0353469-4
- PDF | Request permission
Abstract:
Let $(x(t),\upsilon (t))$ denote the joint Ornstein-Uhlenbeck position-velocity process. Special solutions of the backward equation of this process are studied by a technique used in statistical mechanics. This leads to a new proof of the fact that, as $\varepsilon \downarrow 0,\varepsilon x(t/{\varepsilon ^2})$ tends weakly to Brownian motion. The same problem is then considered for $\upsilon (t)$ belonging to a large class of diffusion processes.References
- R. Courant and D. Hilbert, Methoden der mathematischen Physik. Vol. I, Springer, Berlin, 1931; English transl., Interscience, New York, 1953. MR 16, 426.
- Richard S. Ellis, Chapman-Enskog-Hilbert expansion for a Markovian model of the Boltzmann equation, Comm. Pure Appl. Math. 26 (1973), 327–359. MR 469010, DOI 10.1002/cpa.3160260304
- Richard S. Ellis, Limit theorems for random evolutions with explicit error estimates, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 28 (1973/74), 249–256. MR 368110, DOI 10.1007/BF00533244
- Günter Hellwig, Differential operators of mathematical physics. An introduction, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1967. Translated from the German by Birgitta Hellwig. MR 0211292
- H. P. McKean Jr., Chapman-Enskog-Hilbert expansion for a class of solutions of the telegraph equation, J. Mathematical Phys. 8 (1967), 547–552. MR 211099, DOI 10.1063/1.1705230
- Edward Nelson, Dynamical theories of Brownian motion, Princeton University Press, Princeton, N.J., 1967. MR 0214150, DOI 10.1515/9780691219615
- Edward Nelson, The adjoint Markoff process, Duke Math. J. 25 (1958), 671–690. MR 101555
- S. R. S. Varadhan, Stochastic processes, Courant Institute of Mathematical Sciences, New York University, New York 1968. Notes based on a course given at New York University during the year 1967/68. MR 0260028
- Kôsaku Yosida, Functional analysis, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 123, Springer-Verlag New York, Inc., New York, 1968. MR 0239384, DOI 10.1007/978-3-662-11791-0
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 199 (1974), 65-74
- MSC: Primary 60J60
- DOI: https://doi.org/10.1090/S0002-9947-1974-0353469-4
- MathSciNet review: 0353469