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ABSTRACT.  This paper is focused on the asymptotic distribution of

eigenvalues for semielliptic operators under weaker smoothness assumptions on

coefficients of operators than those of F. E. Browder [3] and Y. Kannai [8]

by applying the method of Maruo-Tanabe [9].

1.  Introduction and main theorem.  The asymptotic behaviour of resolvent

kernels and the distribution of eigenvalues for semielliptic operators have been

studied by several authors, for example, F. E. Browder [3] and Y. Kannai [8].

In these works, the authors treated those operators with C°° coefficients.  In

this note, we shall study operators having weaker smoothness conditions on their

coefficients.

Let m = (mx, • • •, mn) and a = (ax, • • •, an) be multi-indices of posi-

tive and nonnegative integers respectively.  We set

a = I ¡I (where / indicates the least common multiple of m¡),

b = min llm¡, c = 2?=1 1/2/n,-, and  |a:m| = 2?=1 a./mf.

For simplicity, the following notations will be used throughout:

(i) D, = -V^Td/Sx,., where D = (Dx, • • •, Dn);

(ii) for a multi-index a ■* («j,• • •, an) and a point x = (Xj ,• • •,xn)

in a domain £2 of R",

and

<*n       n = Dai ■••Da"-
xn   '       u       u\ un   >

2(s) ~ 2la:m|<s>        2(f) ~ 2|a:ml=f>

'    ' S(s,f) ~ 2|a:ml<i 2|/3:ml<f

2(s,f) = 2|a:ml=s 2|/3:m|=r
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A  domain   Í2   of R"   will be called  an  n-box with its sides of lengths

r¡ (1 < i < n), if Í2 is the set {x G £"|0 < xt < r¡, 1 < i < n}  or its trans-

lation.  Further, we denote by Hm(£l) the space of functions u  in £2(£2)  for

which the distribution derivatives Dau are also in £2(Í2) for  |a:/n|<l;the

space has the usual norm

Mm"Mm,a-(f Z\Dau?dxJ.

Finally, Hm(Sl) shall denote the completion of C^(£2) in Hm(£l), where

C^°(£2)  is the set of all complex valued  C°° functions with compact support.

Now, consider the sesquilinear form

o(u, v) =   f    £   aaßix)DauWvdx
a (i,i)

of (multi)order m and a closed subspace   V for which Hm(Q) C V C Hm(Ci)

under the following assumptions:

(1.1) a(«, v) is symmetric:      aaß(x) = aaß(x)

and

(1.2) a(u, v) > 5||«||2      for any u E V,

where 5  is some positive constant.  Studies on estimates of type (1.2) have been

done by E. Giusti [6], T. Matsuzawa [10] and L. P. Volevich [15].  Associated

with the sesquilinear form a(u, v) is the operator A  on D(A) C V to   V*

defined by   a(u, v) = (Au, v), for u G D(A) and for any  v E V. As is well

known A  is a positive and selfadjoint operator in £2(S2).  Further, the paren-

thesis ( , )  on the right-hand side is the.duality between   V    and   V.  Identify-

ing £2(Í2) with its antidual we may consider   V C £2(Í2) C V* algebraically

and topologically. Then  V is a dense subspace of  V*. The following various

assumptions of smoothness for the coefficients aaß(x) appearing in the form

a(u, v) are now considered:  The aaß(x) are

s-(l)      uniformly continuous for  |a + ß:m\ = 2;

s-(2)      uniformly Holder continuous of order h  for

|a + ß:m\ = 2;

s-(3)      in  C1+A(i2i) for   |a + ß:m\ = 2  and uniformly

Holder continuous of order n  for  2 - 2a < |a + ß:m\ < 2 - a;

s-(A)      in  C2+"(S21)  for  |a + ß:m\ = 2, in  C1+h(Slx) for

2-2a<|a + ftm|<2-a and uniformly Holder continuous

of order n  for  2 - 3a < |a + ß:m\ < 2 - 2a;

s-(5)      constants in  Í2 for  |a + ß:m\ = 2 and in C°°(£2j)

for   |a + ß:m\ < 2;
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where  £2j   is a domain containing  £2  and « isa number satisfying 0 <h <a/b.

We shall now be able to state the main theorem as follows:

Theorem. Let  £2 be an n-box and c < 1. Let N(t) be the number of

eigenvalues of the operator' A  which do not exceed t for t > 0.  Then the

following asymptotic formulas for N(t) hold as t —*■ °°:

N(t) = c0tc + o(tc) under s-(l);

N(t) = c0tc + 0(tc-ae'2)

for any number 8  satisfying

0 < 6 < —^— under s-(2);
bh + a

0<8<      b(-l+h)       under s-(3);
¿(3 + «) + a

0 < 8 <     b(? + ft)       under s-(4);
6(4 + h) + a

0 < 8 < 1 under s-(5);

where «  is such that 0 < « < a/b,

sin (en)   r
co = -cir h co^dx'

c0(x) = (2n)-"fRn\ Z' aa0(x)r+i + it"1 ¿fe

2.  Certain properties for operators on Hm(n).  Let  Q  be the set of

rational numbers, and let

J(m)   = {/ G (2l|a:m| = / for some multi-index a},

Jk(m) = {« G J(m)\h < k},   and

IMU =     Z     ll-Da"Ho    for s e Am).
|a :m\=s

A number of lemmas given on pp. 571-576 of [8] are used later; they are

listed here as Lemmas 2.1-2.3.

Lemma 2.1. If u G £jm(£2) for any n-box  £2 or £2 = R",or if

u G 77jm(£2) for any open set  £2 of R", then Dau G ¿2(£2) for any multi-

index a satisfying  \a:m\ = s < 1. Furthermore if the lengths of edges of an

n-box £2 are rx, • • «, rn, then  (for s < 1)

NU <C3r-*ftlBÍfo + IMIo^jlMlJi;  »fAj^

where the constant C depends only on  m.
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Lemma 2.2 (Sobolev type). If u E Hm(Sl) for any n-box  £2 or

Í2 = R", or if u E Hm(Sl) for any open set £2, then u is (equal almost

everywhere to) a continuous function satisfying

\U(X)\  < Cllwll'-^llHll^

for a positive number s > c, where C is a constant depending only on  m and

on s.

Lemma 2.3. Let  £2 be an n-box or R" and let  T be a bounded linear

operator in £2(Í2) such that the range, R(T),of T is contained in Hsm(£l)

for s E J(m) with s > c.  Then there exists a kernel K(x, y) of T such that

(Tf)(x) = Jn K(x, y)f(y)dy for every f in £2(Í2). Moreover

(i) K(x0, y) E £2(Í2) for each fixed x0 E £2;

(ii) for each fixed x, K(x, •) isa uniformly continuous function of y

from  £2 to £2(S2);

(iii) the following estimate holds:

(Ja lK(x> yrfdy) < entsinn}"*".

where C is a constant depending only on m and on s.

In the following setting of a bounded operator 5 from  V* to   V we

use the notations

IISHL2-L2>     mLl_y,     WS\\V^V,     \\S\\v^l2

to denote the norms of S as an operator on £2(Í2) to  £2(£2), on £2(£2)

to   V, etc.

From Lemmas 2.2 and 2.3, with s = 1, we can establish the following

lemma, which is similar to Lemma 3.2 given on p. 328 of [9] (we omit its proof

which is nearly identical to that of [9] ).

Lemma 2.4. Let Í2 be an n-box or Rn. Suppose that S is a bounded

linear operator on   V* to   V and that c < 1.  Then there exists a function

M(x, y) in  C(ñ x ñ) such that (Sf)(x) = ¡n M(x, y)f(y)dy for every

f G £2(Í2). Furthermore, this kernel M(x, y) of S has the estimate

\M(x,y)\ < ̂ ^K^K^K^
for some constant C depending only on m.

Let A  be the operator associated with the symmetric sesquilinear form

a(u, v) and let  X be a complex number which is not on the positive real axis.

Then by use of the Lax-Milgram theorem, we can show that the inverse,

(A - X)-1, of A — X is a bounded operator on  V*. We now quote Lemma 3.1

given on pp. 326-327 of [9] as follows.
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Lemma 2.5. There exists a constant C (depending on 8,supaa0,m and n)

such that the following estimates hold:

(i) 1104-XT"1 II -   r2<l/d(K),

(ii) 1104 -X)"1 II 2   „   < C|X|,/2/d(X),

0«) 1104 - X)-1«^^  <C\X\/d(X),

(iv) \\(A - ^~\,^2 < C\\\*/d(X).

Here and in what follows d(K) is defined to be the distance from the point

X to the positive real axis.

We state, without proofs, Lemmas 2.6 and 2.7, which are similar to Lemmas

3.3 and 3.4 given on pp. 328-329 of [9].

Lemma 2.6. Let £2 be an n-box or R". Then there exists a constant C

(depending only on m and on s) such that for any s G J(m) with  0 < s < 1,

the following estimates hold:

1104 -XrVlU <C\\\*<l+*'>d(krl\\f\\v.,   for any /G V*,   and

1104 - \)~lf\\sm < CIXprfiXrMl/Ho-   for any /G L2(£2).

Lemma 2.7. Let  £2 be an n-box or R".   Then there exists a constant C

(depending only on m and on s) such that for any s G J(m) with  0 < s < 1

the estimate

IMU < cixr^-^iML + ixñMio)

holds for any u G V.

3.  Estimates of the difference between resolvent kernels on 77m(£2) and V.

An operator A: V —*■ V* is defined by a(u, v) = (Au, v) for any u, vGV
o

while an operator A0: 7/m(£2) —* 7/_m(£2) is defined by a(u, v) = (A0u, v)
_    o

for any u, v G 7/m(£2).  Although both operators A  and A0   are associated

with the symmetric sesquilinear form a(u, v), the parenthesis (Au, v) denotes

the duality between  V* and   V in the former and the parenthesis (A0u, v),

the duality between 77_m(£2)  (the anti-dual of 77m(£2)) and 77m(£2) in the

latter.  Evidently, for the operator A0  the analogues of Lemmas 2.5-2.7 hold.

Let

A - {g G C~(U)\g(0) = 1},

where  U = {x G Rn\\x¡\ < 1, 1 < i < «}.  Let x°  be a fixed point in  £2.

For simplicity, we put  e = S(x°) and
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,• (*l-A *n-Xn\ (x-A

for t?GA.  Note that  Supxen |Da77e(x)| < CeHa:ml  holds, where  C is a

constant depending only on m  and on r¡. For any / G V* we denote

/|£>m(S2) by rf. Note also that (r/, 0) = (/, 0)  for 0 G #m(í2) C V. Using

the mappings

(A - X)"1 : V* — F   and    (¿0 - XT1 : //_m(S2) — ¿m(£2),

the operator 5X :  F*—>-//"m(i2) can be defined by

V = Ve{(A - X)"1/ - (¿0 - X)-'(r/)}

for any /G F .  Obviously, 5X    is a bounded operator on   F    to Hm(Sl)

and hence a fortiori to   V.

Lemma 3.1. If e_1 |X|-% < 1  ond  \X\ > 1, fnen /or anj positive integer

j there exists a positive constant Kj such that

(0 II\IIk*-k < KjFie, X, /OlXIcfO)-1,

(ii), (iii) \\SX\\V^L2<L2^V < ^£(6, X, j)\X\Vld(X)-K

(iv) B^I£X*£4 < ^(e, X, /)d(X)-\

wnere £(e, X,/) = (e_ft|X|1_6/2i?(X)_1)'.

Proof. Let  u = (A - XT1/ - (A0 - X)_1(r/) and v = %u = 5X/ G

£>m(5„(x°; e)) C Hm(H) C V, where 5„(x°; e) = {xERn\\x, -x°| < e1/1"',

1 < 1 < n}. Then it is readily verified that

a(v, v) - X(v, v) = a(v, v) - a(u, r¡ev) + a(ti, ijev)-X(neu, v)

(3.1)
= a(v, v) - a(u, nev).

Recalling the law of sine and noting that a(v, v) > 0 and that

d(X) m jsin(arg X),    if Re X > 0,

|X|       jl, if Re X<0,

we have, for some constant  C,

(3.2) |a(t>, v) - X(v, v)\ > max{8\\v\\2m, |XjfluJ|*}d(X)/|X| > CB(v)2d(X)l\X\,

where B(v) = ||w||m + |X|'/2||ü||0.

From (3.1) and (3.2) it follows that



DISTRIBUTION OF EIGENVALUES 301

CB(v)2 dfX)/|X| < |a(u, v) - a(u, t?6u)|

(3.3)

f     Z   aa&(x)(Da(neu)D0v-D«uDV(nev))d>
Ja (i,i)

< r
(lo

+ z
|a:ml<l-a,l0:m|=l

+ Z
la:ml=l,l0:m|<l-a

+ Z
(l-a,l-a)

- I,  + I3 + I3 + I4.

We now carry out  Ij   as follows:

r,< Z' L aUx)(neDauDh - Dau(neDh))dx
(l.i) J

(1,1) \l-2h<l7:mKl-M '/

-Dau

(3.4)
l-2ft<!6 :ml<l-i>

¿j/3-6^ £,6^^

^'Laaß(x{       Z      (a)Da-y%D^uD^v
(1,1) \\y:m\<l-2b\y/

-Dau        Z
|£ :ml<l—2& ^V^M'

= 111   + Il2   + Il3-

Clearly  I„ =0.  Since  Supxen\Dane(x)\ < CeHa:ml,

I12 <c(       Z e-<W)ll«IUlöll„ + ^        e~<w>llKll#f
Vl-26<i<l-6 l-26«f«l-b

and, because  ||r/||_m < ||/||K», it follows from Lemmas 2.6 and 2.7 that for

f G V*

■)■

1.2 <C /Ze~(1_î)IXIy2(1 +s)d(k)-l\\f\\v*\\v\\m

+ Z e<l-*\\\W + *d(\)-xB(v)\\f\\vl

(Note that  ll«||m < 211(4 ~WlfWm < C|X| ¿(XT111/11F..) Substituting

s = t = 1 - b  in the above and noting that   ||u||m < B(v), we have

I12 < Ce^M1-"'2 dfrr'UfWy^v).

Similarly, for / G ¿2(£2) we have

I12 < Ce-6|X|,4-I'/2i7(X)-1|l/llo5(u).

Similar to the bounds for  Iî2  we find
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^4)Ce-2b\X\l-bd(X)-1\\f\\vtB(v),   for /G V*,

{Ce-2b\X\v'-bdfX^WfW^v),      for /G£2(S2).

Since e-1|Xr,/4 <1  implies e\X\1/¡ > 1, (e|X|y2)-2ft < (e\X\V2)-". Thus

I13 < I12.  Consequently, we get

(3-5) Ij ^Ce-^XI1-0/2^)-1!!/!^.^),   for/GF*,

and

(3.5') ij <Ce-ft|X|v'2-ft/2li(X)-1||/||0£(ü),   for/G£2(í2).

we have

Z        /„ aaß(x)(Z la\D^ne^ubh
\a:m\<l-a, \7<a\~/

For  I2  we have

I2 =

\ß:m\=l

-Dau   Z (^D^6VeD6v)dx

(Note that the term for y = a and  6 = ß is zero.)

Since   |a - 7:m| = |a:w| - l7:m| < 1 -a - s for 7 < a and  Iß -5:m|

= |ß:m| - |5 :m\ < 1 - f for  8 < 0 imply that s <l -(a + b)  and

f < 1 - b  respectively, it follows from Lemmas 2.6 and 2.7 that for f E V*

z
,s<l-(a + b)

\2<C e-d-^NUIulU

(3.6) 4-    Z    e"
t<l-b

(W)|
Hl-a)m"u»tm

<Ce-6|X|1-(a+&)/2«i(X)-1||/llK*^).

Similarly, we find

(3.6') I2 < Ce-b\X\*-(a+»V2d(X)-* ||/||0£(t;),   for / G £2(S2).

It is evident that the bound of I3  is the same as that of I2.  For  I4  we have

I4 <C
.-(l-a-i)i

s<l-(a + b)

(3.7)

"IUH"II(1-a)m

Z       e-(l-a-»\\u\\ \\v\\t^
f<l-(a + &) /

< Ce~b|X|1-(fl+fc)/2|Xrfl/2d(X)-1 U/Hv.B(v),   for /G V*.

And again

(3.7')       I4 <Ce-&|X|v4-(a+ö)/2|Xra/2if(X)-1||/llo£(i'),   for/G£2(S2).

If |X| >l, \Xra'2 <1  and

e-ö|X|i-(a+o)/2|xr/2 <e-ö|X|i-(«+i>)/2 <e-ö|X|i-ö/2.

thus, from (3.5), (3.6) and (3.7), we get
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I,  + I2 + I3 + I4

(3.8)
<C(e-b\\\1-bl2 + 2e-ö|X|1-(<2+ft>/2 + e-&|X|1-(a+&>/2|Xra/2)

•d(KTHñv.B(v)

^Ce-b\X\1-l"2d(X)-1\\f\\vtB(v),

for / G V*.  Similarly, it follows from (3.5'), (3.6') and (3.7') that

(3.8') Ij + I2 + I3 + I4 < Ce-ft|X|'/2-ft/2 CÍO)"1 ||/l!0ß(u),

for / G ¿2(£2).  From (3.3), (3.8) and (3.8') we have

,^X)    _ (Ce^lXI1-^^)-1 ll/ll„.5(«),' |X|B(v)2-

B(v)<
(CF(e, X,

\cF(e, X,

Çe-b\\\*-b'2 d(K)-l\\f\\0B(v),

which implies that

lJIXIrfiX)-1!!/!!^

DlXl'/^iX)-1!!/^.

Consequently, we obtain

(i) \\v\\m < KxF(e, X, OIXIdiXrMl/llK.,

(ii) Hullo  <KlF(e, X, 1)|A|*diX)-111/11 v„

(in) ML <KxF(e, X, OlAPdftT'l/lo'

(iv) Hullo  <JC,f(e,X,l)d(X)";l||/||0.

Hence the lemma is proved for / = 1.  We proceed inductively. Assuming now

that the lemma has been proved for / = k, we then pick another function

f  G  A   such that    f(x)  = 1    for any   x  G  supp(rç)   and write   fe(x)  =

f((x - x°)/€(1'm>).  Letting ?eu = (A - S)~lf - (A0 - \)~l(rf) and  u =

Tjef£« = Sx /we have (similar to (3.1), (3.2), (3.3))

CB(v)2 ̂    < |a(u, v) - aßeu, r¡£v)\

/„    Z   na0(x)   Z ho^v^CjODC
""'    (1,1) 7<«W

-Da(Çeu) Z igJ De-*neD*t?}dx

Z'
(1,1)

z
la :m\<l-a,

1/3: m 1=1

+ z
la : m 1=1,

\ß:m\*Zl-a

Z
(l-a,l-a)

i; +12 +13 +14.
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As in the proof of the case / = 1, we find that

Il <Ce-ö|Xrö/2£(u)£(fei/),

I2, I3 <Ce-ft|X|-(a+0)/2£(u)£(feU),

I4 < Ce-ft|X|-(a+ö)/2|Xra/2£(i;)£(fe«).

In the same way as for the case / = 1, we conclude from the above results that

(3.9) BW2y^\    < Ce-b\xrbl2B(v)B(teu).

But, from the induction hypothesis with f in place of 77 it follows that

(3.10)

From (3.9) and (3.10) it follows that

d(X) (Ce-b\X\-b'2KkF(e, X, *)lX|Éf(X)-1 ll/"llK-,

(KkF(e,X,k)\X\d(X)-l\\f\\v„
#G"e") < {

[Kkp(6,\,k)\\\*d(\rl\\f\\0.

IXI

which implies that

(3.11) £(1

Çe-b\X\-b'2KkF(e, X, ̂ IX^iX)-1!./..,,,

ta
k+1F(e,X,k +1)|X|J(X)-1||/||K„

k+xF(e, X.*-+l)|X|Hd^r«l/||0,

where Kk+X = CKk. The completion of the induction step follows immediately

from (3.11), and the lemma is proved.

As in Lemma 2.4 let  Í2 be an n-box or Rn.  Set  c < 1.  Moreover, let

Mx (x, y), Kx(x, y) and Kx(x, y) be the kernels of the operators Sx ,

(A - X)-1   and  (A0 - X)-1   respectively. Then clearly we have the relation

M*e(x, y) = Ve(x){Kx(x, y) - Kl(x, y)}.

A lemma which is similar to Lemma 4.2 given on p. 332 of [9] is now

stated below.

Lemma 3.2. Corresponding to any p > 0 there exists a constant C = C(p)

so that for any X with \X\ > 1 and for any x° in SI the following inequality

holds:

,K,(A,»)-^„»„<cK^y,

where c <l  and 5(x°) = min{l, dist(x°, 3S2)}.

4. Approximation of coefficients by smooth functions. We shall approxi-

mate the coefficients aaß by functions in C°°(R") so that we can apply

Kannai's results of [8].  Let p   denote the real-valued even function in Cq(Rx)
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for which  suppfjo) is contained in the set {x¡ G Rl\\x¡\ < l/y/ñ}, 1 </'<«.

We write for x = (Xj, • • •, x„) G R"

>M-'-"*U*{jk
Set fR„ pe(x)dx = C.  (We may consider  C=l   for convenience of calculation.)

We now state, without proofs, Lemmas 4.1-4.4, which are similar to

Lemmas 5.1—5.4 given on pp. 333—336 of [9].

.   Lemma 4.1. Let  £2 beann-boxor Rn.  For /G C2(£2), x° G £2,a«cf

for any positive numbers e, S < 1, we set

,1     \(x- x°rdaxf(x°),     if |x,. - x°I < *llmi,
lal<2    °-

(4.1)       fob) =
Z    ¿-(x1 -x°rd%f<x%   tfUi-x?\>Sï,mi,

lal<2   a'

where x*   is the point of intersection of the right parallelepiped {x G R"\

\x¡ - x° | = S 'm', 1 < i < «} with the line segment connecting x°  and x.

Then

(i) pe */0  is a function in  C°°(Rn);

(ii) when e < S, we have pe * f0(x) = /0(x) + Ce(x°) i« the set

{x G R"\\X¡ - x?| < 51/m'' - e1/m', 1 < i < «}, where C£(x°) is independent

of x:

(4.2) Ce(x°)=Z    ^d°f(x°)f     z«pe(z)dz,
lal=2   "•

and satisfies

\Ce(x°)\<e2b   Z    \\d«f(x°)\;
la|=2  a!

(iii) /or any x G R" we have

\pf*f0(x)-f(x°)\<28b   Z    \dxf(x°)\+2ô2b   Z     I3£/(*°)I.
|al=l lal=2

Lemma 4.2. Let  £2, x°, x1, e, 5  be the same as in Lemma 4.1. For

fG C^£2) we set

(4.3)       /oW  =

Z    (x - x°)aaa/(x°),     for  \xt - x° | < 51/mi,
la 1=1

Z    (xl - x°)adxf(x°),   for  \xi-xf\>8i'mi.
la 1=1

Then

(0 Pe*.& is a function in C°°(R");
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(ii) when e <à,pe*f0(x) = f0(x) in the set {x E Rn\\x¡ - x°| <
SI I m i        1 ¡m i   ,   ^ ._    ,

* - e       , 1 < i < n};

(iii) for any x G R"  we have

\pe*foix)-f0ix°)\<2ôb Z   ia*/(*°)i.
la 1=1

We would like to modify the coefficients of a(«, v), but leave semielliptic-

ity of a(«, v) invariant.

Suppose that the coefficients of a(«, v) satisfy the smoothness condition

s-(A).  Select e'  and S  so that 0 < e' < S < 1, then pick any fixed point x°

of SI. We shall apply Lemma 4.1 to aaß for   |a + ß:m\ = 2 and Lemma 4.2

to aaß for   |a + ß:m\ = 2 - a.  For  |a + ß:m\ = 2, let a°aß and  C^(x°)

be the function and the constant defined by (4.1) and (4.2) respectively with /

and e replaced by aaß and e', and set alaß(x°) = pe,*a^lß(x°) - C"P(x°).

For  |a + ß:m\ = 2 - a, let a^ß be the function defined by (4.3) with /

replaced by aaß and set a^(x°) =p£,*a0¡/3(x0).  For  |a 4- ß:m\ = 2 - 2a

and  |a + ß:m\ = 2 - 3a, we put a^ß(x) = aaß(x°) and a^(x) = 0 respec-

tively.  We shall consider the following symmetric sesquilinear form

fli("> «0 =   Z    L alßix)DauWvdx.
(l.i) J"      p

Lemma 4.3. Let  SI beann-boxor R".  Then there exist two positive

constants  C¿ and C such that

axiu, u) > C'Q\\u\\2m - C\\ufQ
e

for any u E Hm(Sl) provided that, as stated above, S and e' are sufficiently

small and independent of x°  (an arbitrary point in  SI) with 0 < e' < Ô < 1.

Next, consider the case when the coefficients aaß satisfy the condition

s-(3).  For   |a + ß:m\ = 2, letting a%ß be defined by (4.3) with aaß in place

of/, we put alß(x) = pe,*a^ß(x). For  |a + ß:m\ = 2 -a and  |a + ftm| =

2 - 2a, we put a2ß(x) = aaß(x°) and a^^x) = 0 respectively. After the

coefficients a2ß are so defined we construct the sesquilinear form as follows:

o2(u,v)=   Z    fa a2aß(x)DauD^dx

for any u, v E Hm(Sl). In the case when the coefficients aaß satisfy the con-

dition s-(2), we put a\ß(x) = aaß(x°) for |a 4- 0:m| = 2. Then let a3(u, v)

be the sesquilinear form on Hm(Sl) x Hm(Sl) defined by

a3(u, v)=   Z'   f   aa0(x)£)a«£^;i/x
(i,i) /n     P

for any m, v G Hm(Sl).

Lemma 4.4. £ef Í2 beann-boxor R". Then there exist two positive
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constants C¿ and C such that for i — 2, 3

a¡(u, u) > C'0\\u\\2m - C\\u\\2

for any u G Hm(Sl), provided that 5  and e' are sufficiently small and inde-

pendent of x°   with 0 < e' < 5 < 1.

With a minor change of notations a method given on pp. 87—89 of [1] can

be readily adopted to prove the following lemma.

Lemma 4.5. Let aaß be bounded and measurable in any open region  £2

for \a:m\ < 1, \ß:m\ < 1. Let  C0 > 0 and  C' >Q  be given constants.  If

for all <pGCÔ(£ï)
Re a(4>, </>) > CQU\\2m - C'\W\20,

then for almost all x in  £2 and for any real vector %,

Re   Z' aaß(x)%«^ > C0p(%),   where p(%) = ¿  ||,|2w>.

(i,D i=i

5. Effect of smoothing coefficients of the kernels on 7/m(£2).  Suppose

that e'  and  5  are given sufficiently small with 0 < e' < 5 < 1, as above.  In

the previous section the semielliptic sesquilinear forms a¡(u, v) have been defined

by means of the smooth coefficients a'aß, i = 1, 2, 3.  According to the

Lax-Milgram theorem, there exist operators At associated with the forms

at(u, v) restricted to 77m(£2) x 7/m(£2), that is, a¡(u, v) = (A¡u, v) for any

u, v G Hm(Q), i = 1, 2, 3.  Consequently, for sufficiently large   |X|  the opera-

tors

At - X: 77m(£2) — H_m(V)

defined by

a{(u, v) - X(u, v) = ((A¡ - X)u, v)

for «, v G 77m(£2), possess bounded inverses (A¡ - X)      respectively, f= 1,2,3.

In order to estimate the difference between the resolvent kernels of A0  and

those of Ax, we set

S{ef=V£{(Ao -Xr1 -(4, -X)"1}/

for / G 77_m(£2), where e is an arbitrary positive number and T?e(x) =

n((x -x°)/e(1'm)) for tjGA as before.  For an operator S on H_m(ü)

to 77m(£2) we denote by

IISH(-m,m).      ll5H(_m,o),      H5|l(o,m)    and    ||5||(o,0)

the norms of S considered as an operator on //_m(£2) to Hm(Q), on H_m(Q)

to  £2(£2), to ^m(£2) and on ¿2(£2) to ¿2(£2) respectively.
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Lemma 5.1. // ■~*|X|1"*'adO)"1 < l with 0 < e < 1, |X| > I, then

for any positive integer j there exists a positive constant K-, which is indepen-

dent of x°, e and  X, such that

ll^ell(-m,m)<*/*l(e,X,/),

\\sijk-m,o^Sieko,m) <KfRx(e, X,f)\Xrv\

Bixe»(o^)<^A(e,X,/)|Xrl
where

ixi V ^ /ixi'-^V IXI«.* »•'> - •»♦»« + «*«*■)(§$ + (gg
ebd(X) j  d(X) '

Since the proof of the lemma is similar to that of Lemma 6.1 given on

pp. 336-338 of [9], we merely state the changes of bounds of  \aaß(x) -

aaß(x)\ which are necessary in the semielliptic case.  First consider aaß for

|a + ß:m\ = 2.  Let e be such that  0 < e < min{e0, 5 - e'}  where e0 =

dist(£2, dSlx). Then in view of Lemma 4.1, we get, for   \xt-x°| <e1'm/,

1 < i < n,

«¿<j(*) = <,(*) =    ^    1-Qe - xOyaya^O)^
IA.K2     '•

Hence it follows from the Taylor expansion of aaß at x = x°  that

(5.1) Kßix)~alßix)\<Ce2b+hb.

Replacing  C by another constant if necessary we find that (5.1) is true without

any restriction on e > 0.   Similarly, for   |a + ß:m\ =2 - a  and   |a + ß:m\ =

2 — 2a, we have

Kßix) - "IßW < Ceb+hb    and    Kßix) - olaßix)\ < Cehb

respectively, if  |x,. - x°|< e1/m'', 1 < i < n.

Now the proof of the lemma follows immediately from similar arguments of

T91
Let A¡ be the operator associated with the sesquilinear form a¡(u, v)

and denote by K'x(x, y) the resolvent kernel of A¡, i = 1, 2, 3.

Lemma 5.2. Let  SI beann-boxor R".  Set c < 1. For any positive

integer /, there exists a positive constant C — C(j) so that, for any selected

x° E SI, e and X for which 0 < e < 1, |X| > 1  and e'b\X\l-b/2 dQ,)'1 <1,

it is the case that

(5.1),.   \Kl(x*,x0)-Kt(x°,x*)\<C\\r'tRfe,\,j)   under s-(5-i),

where
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Rfi>, X,j) = e2>+*»-e--i>(i + e^Xrtó + í^rf
\d(X)J        \ebd(X) }  i

JXj_
d(\y

i = 1, 2, 3.

Proof. The inequality (5.1)t   follows from Lemmas 2.4 and 5.1. The

inequalities (5.1)2 and (5.1)3 can be proved analogously and we omit the proof.

For a compact subset of £2, Y. Kannai's result and ours agree.  In the main

theorem we assume that  £2 is an n-box and  £2X   is a domain containing  £2.

Letting £2 be a domain containing £2, as the assumption of the previous section,

we set

Z' alfWF+e > CM)
(1,1)

for any x G £2, where  C is a constant independent of x   G £2, i = 1, 2, 3.

Let A¡ be the operator associated with a¡(u, v), the sesquilinear form defined

on Hm(ñ) x Hm(ñ) by

afii, v) =   Z   L a'-ßZ(x)DauDhdx(i,D Jn

for any u, v G 77m(£2) and denote by K'x(x, y) the resolvent kernel of A¡,

i = 4, 5, 6.  For u G 77m(£2), we set u(x) = u(x) for x G £2 and  u(x) = 0,

for x G £2\£2.  Then u G 77m(£2) and by this correspondence 77m(£2)  may be

considered as a closed subspace of 77m(£2).  Recall that  eb = S(x°) =

min{l, dist(x°, 9£2)}  for x° G £2.  Let S{    be the operator on H_m(Q) to

^(£2)  defined by

•V = %W,-3 - X)~l(r7) - (A( - X)"1/}

for any / G 77_m(£2), where  rj£(x) = rfcc - x°)/e(1/m)) for n G A and

rf = /|77m(£2).  Of course, S'x    is a bounded linear operator, í = 4, 5, 6.

Lemma 5.3. If e-1 |Xr'/2 < 1  with 0 < e < 1  and  |X| > 1, then for

any positive integer j there exists a positive constant K, so that for any selected

x°, e and X the following estimates hold:

IIS(£ll(-m,m)<^(e)X,/)|X|d(X)-1,

\\S{\\(0,my WSixe\-m,o)<KjF(e, \, j)\\\* d(\yl,

ll^£ll(o,o)<V(e> M)d(K)-1,

where F(e, X,/) = (e-*|X|1-*/a «/(X)-1)', * = 4, 5, 6.

Proof. Noting that  v = t\eu-= SlK f with  supp(u) C £2 and

a¡(v, v) - X(u, v)  = a¡(v, v)  - a¡(u, r¡ev)   the proof of the lemma will follow
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the same approach as that of Lemma 3.1. We shall omit the detail.

Lemma 5.4. For any p>0 and any X with   \X\ > 1   there exists a con-

stant C = C(p), which is independent of x° E SI and X, such that

i = A, 5, 6, where c < 1.

Proof.  Using the same method as in the proof of Lemma 3.2, the inequal-

ities follow from Lemmas 2.4 and 5.3.

For the resolvent kernels of the operators with smooth coefficients Kannai

has established very general results in [8].  In order to adopt his result for our

purpose, we first quote from [8] the following.  Let  Q = {q E Rx\q >b, q/a

is a natural number}. The function u E C°°(Sl) has a zero of type q  with

respect to  m at a point x°  of Í2 where q E Q U {+ <»}  if u and all its

derivatives Dau with  \a:m\<q vanish at x°.  If u(x°) =£ 0 we say that u

has a zero of type q = 0 at x°.

Further, we denote by q0 = <70(x°) the maximal element of q  in

Q U {+ «>}; all the coefficients of aaß(x) - aaß(x°) for  |a + ß:m\ = 2, have

a zero of type q0  at x°,andby q¡ = q¡(x°) (/> 0) denote the maximal

element of q  in Q U {0} U {+ °°}; all the coefficients of aaß(x) for  |a + ß:m\

= 2 -ja, have a zero of type qf at x°.  We associate with the sesquilinear form

a(u, v) a number 0(x°) defined by

n                       Qi + fo
6(x°) =      min    -2--

0<j<2/a   Qj + b

where we agree that  (q¡ + ja)l(qj + b) - 1   if q¡ = °°. With the 9(x°) so

defined, we restate his Theorem 5.1, in somewhat restricted form, as follows (see

pp. 590-591 of [8]).

Lemma 5.5 (Kannai). Let SI be an open subset of R". For any posi-

tive number £, there exists a positive constant C = C(j-), which is independent

of x°  in  SI, such that

\Klx(x°, x°) - c¿(x°)(- X)^11 < ClXr1-"/2,      i = 4, 5, 6,

for c <l, |X| > 1, d(X) > |X|1_ö(;c0)&/2+e, wnere

c0(*°) = <o(*°) = G*)"" fRn il,' oaß(x°)^+^ + l\~ldï

where 6(x°) is the number stated above.

We repeat the assertion of [8] that in the elliptic case, or in similar cases
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where a = b, it is possible to replace  8(x0) by xh in general, and by 1 if the coeffi-

cients of the semiprincipal part of the kernel are constants (see [8] for more detailed accounts).

In the following we shall prove a theorem under the conditions s-(2), s-(3)

or s-(4). Since we have to apply lemmas in the previous sections in proving the

theorem, we have to examine that the inequality

€-b|X|i-&/2¿(X)-i <!    with  |x|>i  and 0<e<l,

assumed for those lemmas, holds also under the smoothness assumptions.  In order

to have a unified argument, we introduce three constants  Cx, C2  and  C3  such

that  Cx = C2 = C3 = 0 for s-(2), Cx = 3, C2 = 1, C3 = 2  for s-(3) and

Cx - 4, C2 = C3 = 2  for s-(4) respectively.  Note also that  Cx = C2 + C3

in all three cases.  From

b(C2 + h)

°<e < b(Cx +h)+a
it follows that

1 r        (a + C3b)dl
r \bd +-—2 L C2 + « J

.  b m   b(C2 +h)+a + C3b      b

2 '        b(Cx + h) +a 2

which implies that

(5.2) (a + C3b)8 _b_       b8_

2(C2 + h)     2 2 "

By taking

(5.3) e = \\\-(a+c3b)e/2b(c2+h)t

we obtain

e-*|X|-»/2 = \X\(^c3b)ei2ic2+h)-bi2 < m_be/2 < |X|_1</(X)

if d(k) > |X|1_fte/2   is satisfied (under the smoothness assumption).  Hence the

inequality is verified under the assumptions.

Theorem 5.1. Let £2 be an n-box.   Under the condition s-(2), s-(3) or

s-(4), the estimate

holds for any p >0 and any x G £2 provided that d(K) > \K\l~be/2, 0 <

8 < b(C2 + h)/b(Cx + h) + a, where c < 1 and  C is a constant depending

only on p and on 8.

Proof.  Under the assumption s-(2), s-(3) or s-(4) it follows from Lemmas

3.2, 5.2 and 5.5 that
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\Kx(x,x)-c0(x)(-X)c-l\

< \Kx(x, x) - Kftx, x)\ + \Kx(x, x) - Klx(x, x)|

(5.4)        + !*((*, x) - c0(*x- xr*1!

Moreover,

cixr1{£i(e,x,/) + ixra/2}

= C\Xrl\e2b+hb-V-l\l + e-hb\X\-a'2)(f^\2

\e»d(X) J  d(X) \

= cixr^i + ii + m}.

Without loss of generality we may assume  i = 1   in (5.5).  It is evident from

(5.2) that
(a + C3b)8       j

(5-6) 2Hc7Tn)-2<0-

From (5.3), (5.6) and the fact that  \i(hb - a) < 0, we obtain

e-AÖ|X|-a/2 = (e-l\M-H)hb\X\Mhb-a)

_ yX\&a+Czb)ei2b(C2+h)-Vi}hb + Vi(hb-a) ^ q

where  C is a positive constant, and consequently, 1 4- e_ft&|Xra'2 < C for

|X| > 1   under the assumption 0 <h <a/b.  By taking e as in (5.3) and

noting that d(X) > |X|I-6e/2, we obtain

(5.7) I < £*»+*>/J^-V  < C\X]re-ae/2

where

.      (a + C3b)(2 + n)
P _ i  ¡i._

2 2(C2 + h)
(5.8) 2

2(C2 - C3)b + (2 - C3)bh + (C2 - 2)a

2(C2 + h) *

Under s-(2) (C2 = C3 = 0), (5.8) gives
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Under s-(3) (C2 = 1   and  C3 = 2), (5.8) gives

Tmz2*±û <0.
2(1 +a)

Under s-(4) (C2 = C3 = 2), (5.8) gives T = 0.  Consequently, since  V is non-

positive in all three cases, (5.7) implies that  I < C|X|-ae/2. Obviously, it follows

from 8 < 1  that

ii = ixra/2 < ixra6/2.

By noting that d(X) > \\\l~b6l2   and taking  e  as in (5.3), in order to achieve

in < ixie<e> < ixrae/2

where

, lía + C3b)8 )

e(ö) = 2jC   +h   j " bi + b6 + b6f\ < ~a°12

we must impose on 8  the condition

(a + C3b \
- j +a +b + bj)8 < bj

\C2+h )

which implies that

e<-U-<i.
((a + C3by(C2 + «))/ + a + b + bj

Note that the above quotient tends to b(C2 + h)/b(Cx + h) + a  as / —* °°.

Thus since I, II and HI are dominated by  C|X|_ae^2, we obtain from (5.5) that

x- xr M <cjixr'- /2+^f^y!
( d(X)\Ç(x)d(k)/  )

\Kx(x, x) - c0(x

for d(X) > |X|1_ft9/2   and   |X| > 1  under the condition s-(2), s-(3) or s-(4).

Hence the proof is complete.

6.  Proof of main theorem.  If c < 1, then the kernel Kx(x, y) of the

resolvent  (A - X)-1   of A  is in  C(£2 x Ù).  Since the operator A   is sym-

metric, Kx(x, y) = K^(y, x).  The operator A possesses a compact resolvent and

the spectrum of A  consists of a discrete set of eigenvalues.  Let {X}  and {$•}

be the sequences of eigenvalues and corresponding eigenfunctions respectively of

the orthonormal form.  From Mercer's theorem,

^   <Pj(x)4>j(y)
Kx(x, y) = 2- _       ,

y=o     Aj    A

for any fixed X which belongs to the resolvent set, and the series is absolutely

and uniformly convergent for any  (x, y) G £2 x £2.  By using the notation
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0,(0=    Z   I0;(x)|2,

I0/(*)I2        r==   dox(t)

Xj<t

K(x xs-y '^"   . r -^
;=0      'V        " -       .        X

We now quote two lemmas given on p. 342 of [9] as follows.

Lemma 6.1. Let  o(t) be a nondecreasing function for t>0 suchthat

¡Ô do(t)/(l + t) < + <*>. Suppose that

rt»-jr«2 - «-¿ri«,/»*
w/zere Z,(|) is an oriented curve in the complex plane from  £   to  % = t + ir

not intersecting  (0, °°).   Then for  t, r > 0,

|7(|) - (r/7r)Re /(£) - o(t) + o(0)| < r Im /(£).

A proof of this lemma is given in [12].

Lemma 6.2.. Let £2 be an n-box or R". Then there exists a positive con-

stant C such that for any t > 0 and any x G £2, ax(t) < Ctc holds (where

c is in place of n/2m as in [9]).

Finally we proceed in precisely the same way as in [9] to obtain the

desired estimate:

(6.1)
/v»     »» s-„sin(c7r)     , „

ax(t) - (2n) "—^ c0(x)t <Qc~a0l2Ô(x)-e.

(6.1) holds under s-(2), s-(3) or s-(4).  If s-(5) is satisfied, we can make

use of that portion of the theorem of Y. Kannai (see [8], [9] ) covering the

case of constant coefficients in the principal part. (6.1) is readily verified for any

8 with  0 < 8 < 1.  Accordingly, by integrating (6.1) over £2 we obtain the

asymptotic formula for N(t) described in the main theorem.  As far as the case

s-(l) is concerned, we need only investigate the asymptotic behaviour of Kx(x, x)

for real X —* °° and apply the tauberian theorem of Hardy and Littlewood.
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