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ABSTRACT.   For   e > 0   small, let   ifÇi)  and  S(t)   be strongly con-

tinuous semigroups of linear contractions on a Banach space   L  with infinites-

imal operators  A(e)   and  B  respectively, where  .4(e) = A^ * + eA^ ' + o(e)

as  e -» 0.   Let   {b(u); u > o}   be a family of linear operators on  L  satisfying

B(e)=B + eïl^ + e2n(2) + o(e2)  as  e -» 0.   Assume that  A(e) + e~lB(e)

is the infinitesimal operator of a strongly continuous contraction semigroup

re(f)  on  L  and that for each f^L,limx^,0\¡Qe~XtS(t)fdt = Pf exists.  We

give conditions under which   T6(t)   converges as   e -*• 0   to the semigroup gener-

ated by the closure of    P(A^ + n^)    on  R(P) n P(4(1)) n PiXI*1*).   If

/'(4(1) + n(1))/=0,BA=-(^(1) + n(1V. and we let Vf=P(A^ + n(1))ft, then

we show that T£(t/e)f converges as e -» 0   to the strongly continuous contraction

semigroup generated by the closure of   I" ' + V.

From these results we obtain new limit theorems for discontinuous random

evolutions and new characterizations of the limiting infinitesimal operators of the

discontinuous random evolutions.  We apply these results in a model for the ap-

proximation of physical Brownian motion and in a model of the content of an

infinite capacity dam.

1. Introduction. The perturbed semigroup limit theorems in this paper are

motivated by results on discontinuous random evolutions.  Let X(f), t > 0, be

a finite-state, continuous-time Markov chain with values in   {1, 2, • • • , N}; rx,

T2> ' ' ' > Tv  ^d v   denote the transition epochs and total number of transi-

tions before time  r/e for the process X(i).  For each  1 < / < TV, let  T¡(t) be

a semigroup of linear contractions on a Banach space L; for each  1 </ i=- k < N,

let  n;fc(«), u> 0, be a family of linear contractions on L satisfying  nyfc(e)/ =

/ + eILfc/ + o(e) as e -* 0 for /£ f(II/fc). We define the discontinuous ran-

dom evolution by
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Me(t) = ^(0)(^1)nAr(0)Ar(Ti)(e)r^(Ti)(e(r2 - rx))

Investigations of lim^o^-[Me(0/x(f/e)]   and \xme^0Ej[Me(t/e)fx(t/e2)\   are

motivations for and are shown to be applications of the perturbed semigroup

limit theorems presented in §§2 and 3.

In §2 an application of the limit theorems for discontinuous random evolu-

tions is given to the approximation of physical Brownian motion by the motion

of a macroscopic particle within a medium of microscopic particles.  Another

application is made to the approximation of the content of an infinite capacity

dam as the random epochs of rainfall become more frequent and random quantity

of rainfall per occurence diminishes.  Limit theorems for discontinuous random

evolutions in which the "controlling" Markov process is a regular step process

rather than a finite-state Markov chain constitute §4.  Instead of the norm con-

vergence used in §§2 and 3 we use buc-convergence, i.e., convergence of bounded

families, uniformly on compact sets, in §4.  In all applications of the limit

theorems to discontinuous random evolutions we give new characterizations of

the limiting infinitesimal generator.

In [6] Griego-Hersh introduced "continuous" random evolutions, i.e.,

random evolutions without the presence of the "jump operators"  ILfc, and used

this concept to prove singular perturbation theorems. Perturbed semigroup limit

theorems motivated by continuous random evolutions were proved by Thomas G.

Kurtz [14]. Pinsky introduced discontinuous random evolutions as a representa-

tion for multiplicative operator functionals of a Markov chain in [15] and showed

in [16] that Me(t) is the unique solution to the linear operator equation

Kit) = I + f0 Me(u)Ax(u/e) du+      £     M£(eTk){nxiTk_i)x(Tk)(e) -1},

where, for  1 </ <N, A, is the infinitesimal operator of T¡(f).  The author

has proved limit theorems for discontinuous random evolutions using other tech-

niques and has applied these results to singular perturbation theorems and to

central limit theorems for Markov processes on N lines [10], [11].  Surveys of

the literature on random evolutions are given in the papers of Pinsky   [16]   and

Cogburn-Hersh [3].

2.  "Weak-law-of-large numbers" type perturbation results with norm con-

vergence. Let I be a Banach space. Suppose {U(t); t>0} and {S(t); t>0} are

strongly continuous semigroups of linear contractions on L with infinitesimal opera-

tors A and B respectively. Suppose that {6(f), t > 0} is a family of linear operators

on L  and  II is a linear operator satisfying



PERTURBED SEMIGROUP LIMIT THEOREMS 31

(2.1) B(e)f =Bf+ en/ + o(e)

for fE V(B) n V(U) and e 4- 0.  Take B to be the closure of B restricted

to V(A) n V{B) n P(IT).  Suppose for each e > 0 small that the closure of

A + e_1Z?(e) is the infinitesimal operator of a strongly continuous contraction

semigroup  Te(t) on L. .,

Notation is that of  [12].  A possibly multivalued operator A  is written

as a set of ordered pairs A = {(x, y); Ax = y}, with V(A) = {x; (x, y) G A}

and  R04) = {y; (x, y)EA}. We use lim„ _„,(.*„, yn) = (x, y) to mean

lim^^x,, =x and limn^.ccyn =y.   Limits here and below are taken to be

strong limits. Proofs use techniques found in   [14].

Theorem 2.1. Suppose  U(t), S(t), B(t), U, and  Te(t) are given as above.

Assume that

(2.2) hm\re-XtS(f)fdt=Pf
\-*o   Jo

exists for every fEL.  Let

(2.3) D = if g R(P); f g PC4) n p(n)}

a«<2 de/me /or / G Z)

(2.4) F/ = n^ + n)/.

Assume that  R(X - F) D Z) /or some X > 0.  Then there is a strongly

continuous contraction semigroup   {T(f)\ t > 0} defined on   D   with

\ime^QT£(t)f = T(t)f for all fED.   The infinitesimal operator of T(t) is the

closure of V restricted so that  Vf G D.

Proof. Let  Ve = closure of A +e~1B(e) = infinitesimal operator of Te{i).

From Theorem 1.10 of  [14]   and Theorem 2.1 of  [12, p. 357], it suffices to

show

{if, Vf);/GZ)}   C   {</, g); 3f/e, ge) G Ve  with lim (/e, ge) = (f, g)},

i.e., given /GZ), we must find fe G £>(Fe), £e = Vefe G R(Fe)  such that

lime^.0/e =/ and \\me^,0ge = Vf.   For then, using   R(X - V) D D, we have

that there exists a strongly continuous contraction semigroup   {T(t); t > 0} on

Z) such that lime^.ore(r)/= T(t)f for each fED.  From this theorem it also

follows that the infinitesimal operator of T(f) is the closure of {(/, g); (/, g) G V

and / g G 5}, i.e., the closure of  V restricted so that   Vf ED.

Recall that we are considering B as the closure of B restricted to V(A) D

V(B) n £>(IT).  Hence for any g G R(ß), there exist he G 0(4) n £>(£) n £>(JI)

such that lim^Q/i/Zç = g, and, if necessary by relabeling the index set, such that,

in addition, \\(A + II)fte|| - o(l/e)  and  ||Ae|| =o(l/e)  (see §A.4 of [10]).
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Hence Ume_0eVeh€ =g since

\\eVehe - ¿|| = \\eAh€ + B(e)he - g\\ < \\eAh£ + Bhe + eïlhe - g\\ + o(e)

< e\\Ahe + n/gi + \\Bhe -g\\ + o(e) = ||6fte -g\\ + o(e).

From Theorem 18.6.2 of [8, p. 516], we have thatPis a projection and R(B)

is dense in n{P), the null space of P. Hence, if /€£>, P(A + 11)/- (A + Iï)f is in

R(6), and we can choose he G V(A) n V(B) n V(Jl) such that lime_0eVehe =

P(A + IT)/-(A + IT)/, with  ||ft,|| = o(l/e).  Also from this theorem, R(P) = n(B);

hence, since / E D we have   VJ = (A + e-1£(e))/ = Af + 11/ + o(e)/e.  If we

set f£=f+ ehe  then lime^.0/e =/ and lime_>0Vefe = Vf, where we use the

inequality

HP,/, - p/ii = IIP/+ eP,*, -p(^ + nyii

< ||(4 + n)/+ eVehe -P(A + n)/|| + o(e)/e = o(l).

Thus, given /£ A there are /e G P(Fe)  for  e ¿ 0   satisfying lime_0fe =/

and \xme^0VJe=Vf.    Q.E.D.

Remark. Theorem 2.1 remains valid if we replace  U{f) by  lAe\t) in

Theorem 2.1, where  CAe-*(f), for each e >0, is a strongly continuous semigroup

of linear contractions on L with infinitesimal operator A(e) satisfying A(e) =

A +o(l) as  e —* 0, and if we then assume that A(e) + e~1B(e) is the infinites-

imal operator of a strongly continuous contraction semigroup  Te(t) on L.

Example 2.1. Let   {%{t)\ t>0}   be a time-homogeneous, irreducible

Markov chain with values in E = {1, 2, • • • , TV}.   We assume  £(r) has gen-

erator Q = (qaß),   1 <a, ß<N, stationary distribution  (p¡),   1 < / < TV, and

transition probabilities   {p¡k(f); t >Q}, I <j, k <N.

Suppose for each  1 < / < TV, that  Tj(t) is a strongly continuous, linear,

contraction semigroup on a Banach space L with infinitesimal operator A¡. Let

L be the Banach space of functions /: E = {1, 2, • • • , TV} —► Z, with  ||/|| =

maxi<j<N \\fj\\L. The operators   {U(t); t > 0} and {S(t); t > 0}, defined by

mm=Tm, mn, = £ »*(% «*/ « i, • • •, n
ill i     i<fe<AT  '"

are strongly continuous linear contraction semigroups on   L.  U(t) and S(t)

have infinitesimal operators A  and B respectively, given by  (Af)j = Ajf)- and

(Bf)j = Zl<k<Nqjkfk  for / = 1, • • • ,TV.

Suppose for each  1 < / # k < TV, that   {ILfc(r); r > 0}  is a family of

linear contractions on L  and  ILfc  is a linear operator satisfying

(2.5) Uik(e)f = f-renikf + o(e)

as e I 0 for /6D(n/t) C L.  We denote by   {5(0; t > 0}   the family of

linear operators on   i.  given by
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<ß(f)f)r   2- i¡*W)f*+°aff
k=l,k*j

for / = 1, • • • , N.   We define the operator  II by

(n/),=     £   ajkY\jkfk
k=l,k¥=j

for / = 1, • • • , N and for fE{fEl;fkE V(JAjk)  for / = 1, • • • , N, / + k}.

Then it follows that

(2.6) (ßdunf = {Bf)i + e(nf)i+o(!E)

as e I 0  for /eprjl) n p(fl) = P(II).

The operator 4 + e~lB(e) is given by

(2.7)       [(A+e-1B(e))f)i=Ajfi + e-1      £   ?/fcn/fc(e]/fe + r1?/,/,
fc=i,fc^/

for /= 1, • • • , N,  e > 0. >i + e-1Z?(e)  is the infinitesimal operator of the

strongly continuous contraction semigroup  Te(t) on   L, defined by

(re(í)/)í=£,/[r£(o)(eíÍ)n€(0)£(f.)(e)rí(íí>(6(rí-íí))
(2.8)

for /= 1, • • • ,N, e > 0, where  t*, t*, • • • , t*  and  p  are the jump times

and number of jumps for the process  £(m) in the time interval   [0, t/e].

We assume that B is the closure of B restricted to V{A) n 1XU). In checking

that the conditions of Theorem 2.1 are met, we note that limx_>0X/^°e_Xfp/fc(r)rir =

pk implies that lim^0X/£(rXiS(r)/<2r = Pf exists for each /G L, where P is

given here by

(2.9) (Pf)r ZPkfk
k=l

for / = 1, 2, • • • , N.  In this setting

£>={/Gl;/} = >v  for /=1, ••• ,N,

(2-10) w£        D        (domains of Aa, Tljk)\
Ka,j*k<N >

and

(2.11)    Vf = P(A + n)/= ( E PA +     S     ty?/*n/* )w * (0
\/=l Kj¥=k<N )

for f=w • (1) in Z).   The notation /=w • (1) means /=(/}) and /} = w

for all / = 1, • • • , N.   Finally, we assume that  R(X - V) D D for some  X > 0.
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Then, by Theorem 2.1, there is a strongly continuous contraction semi-

group   {7Xr);/>0} defined on D with \m^0Te(f)f = T(f)f for all fGD.

The infinitesimal operator of T(t) is the closure of V restricted so that Vf ED.

Application 2.1. We consider the motion of a particle am, of mass m,

moving in a one-dimensional medium. We suppose there are several position-

dependent fields of force which act in the medium. We assume that the medium

also contains homogeneous particles aM, of mass p. and with several possible

velocity distributions given, independent of the motion of am. The motion of

am  is to be determined by one of the force fields between collisions of am  with

particles a^  and at collisions is to be given by the  "law of elastic impact." We

assume that collisions occur   "randomly" (see [9, p. 421]).

Specifically, functions Fa: R —* R,  1 < a <TV, represent different force

fields, and are assumed to be Lipschitz, twice continuously differentiable, and

bounded. We let   {%(f)\ t > 0}   denote a Markov chain taking values in

{1, • • • , TV} and with generator Q = (qjk). We assume the hypotheses and

notation with respect to Q and  £(•) which are given in Example 2.1.  For

each  1 < / ¥= k < TV, the family   {îjf(/, k)}(> j   of independent, identically dis-

tributed random variables represents one of TV(TV - 1) possible velocities of the

particles aß.  These families of random variables are independent of each other

and of the chain |( • ), with family   {77,(7, £)}/> 1   having distribution function

Rjk(y). We define the position-velocity process   {ZM(0 = (X"(0, l*(0)î ' > °>

starting at (x, y) by  (**(0, !*(#)) » (*«(*),yjfi) for <*</<r*+1, 7 > 0,

where  £(/?) = a and (xa(t), ya(t)) is the solution at time  f of the system

d*a d2«-F (x v

(2.12)

xa(tp = X»(tf),  ya(tp = Y^tp;

and at the times  t = f?, XM(0  remains continuous and equals Xß(t -) =

X»(t+),  Y^t) is to be right-continuous, with    Y^t) = Y»(tf -) +

K^/dí/Í-i), %tf)) - Yß(tf-J) where  i> = 2p/(m + p.), according to the law of

elastic impact (see [17]). Note that   {(^TM(0, ̂M(0); t > 0} is a Markov process.

We prove a limit theorem for this process in the following setting.  We let

£(i)-|,(0  depend upon e>0 through its infinitesimal generator Qe = e~lQ

and for each  l</#fc<TV let Rjk(dz) = Rejk{dz) depend upon e and sat-

isfy JzR]k(dz) = 0, ßefz2R]k(dz) = Tjk = constant, and lime^0p2ef\z\3Rjk(dz)

= 0, for mass p. = pe = e. For each e, the gas is at rest {E {17?(j, k)} = 0) and the

kinetic energy of the system is constant while the process remains in any given

state, but may vary from one state to another (E{p£(rf(j, k))2} - T¡k). In the

limiting operation, we are letting mass pe —► 0, average velocities of aße —► + °°
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(but require constant temperatures), and collision rates - <7,y = - q^/e —► + °°

(but require constant viscosities proportional to ol = - 2q^ = 2q^pe). Using

Theorem 2.1, we show that under these conditions Zße(t) converges in distribu-

tion to physical Brownian motion; we do this by proving convergence of the semi-

groups of the processes.

Let L = space of bounded, continuous functions on R2   with supremum

norm; Cn = space of «-times continuously differentiable functions on R2  with

bounded support; and D" = space of bounded w-times differentiable functions

on R2.

For each  1 </ <N,   {Tat); t>0}   represents the linear contraction semi-

group on L  defined by  T¡{t)f(x, y) = f(x\t, x, y)), with infinitesimal operator

At given by A¡f{x, y) =ybf/dx + Ffic)df/dy  on Z)1. For each Kj*k<N,

{II-fc(i>); v > 0}  represent linear contractions on L  defined by

U/k(v)f(x, y) = /_" f(x, y + viz -y))Rjkidz).

From [9, p. 422]   and [16, §1.3], we have the representation

Wjit, x, y) = Elf^Zf'mZ^iQ) = ix, y), *e(0) =/] = (Pe(0/)y

= £"{P£(0)(ei*)n£(0H(ip(I;)P£(fp(e(i*-i*))

••" Tt(tSr(t/t/t-<we))fMeXe(0>(x,y), 1(0)=/}

for the semigroup of the (ZMe(r), £e(r)) process and for the solution to the

initial value problem

9wf 1      ^
■jf = Mi + J     £   t/,V»>í + q^,

(2.13) k,k*'

w/(0) = fj,      KJ<N,  t> 0, /} in C1.

For each  1 < / ¥= k < TV, from the assumptions on Pjfc(cfe), we obtain that

Tljkiv) = I + eTljk + oie) as e —► 0 on Z)3, where Ujlc is defined by

On the set D = {/G l;fj = w in Z)3, 1 </ <N}  we define   V by

JV

(Vf)n = Z PjAjw +        £        P/?/*n/JtW
;=1 Kj*k<N
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for    1 < n < TV   with   F(x) = Z^, p,F/(x),  a = ZJ^p/ty , and    7/ =

(2/á)Xlsíj^k<NPjq¡kTjk.  Since   F satisfies the conditions of Theorem 2.1, there

is a strongly continuous contraction semigroup   {7X0; t > 0}   defined on  S2 =

{/G /.;/} = w is in L,\<j<N]   satisfying lime_>ore(0/= 7X0/ for all

/G n. We let S(0: Z, —► L represent the strongly continuous contraction semi-

group defined by S(t)w = (7X0/)/ for /= w • (1) in Q, and extend the set on

which convergence holds (see [7, Corollary to Theorem 1]).   We obtain

lime_»0(re(0/)y = S(t)2N=1pafa  for / in L.  The infinitesimal operator of

7X0  is the closure of  V.   In particular, if w(t, x, y) is the bounded solution of

(2.14)

dw _    dw

Bt ~y dx

N

+ F(x)-r- + -  \-y t-  + (T/m) —-
by      m L     <>y dyij

w(0) = Z P/f/,     t > 0, fj in C3

then w(/,ac^) = S(iX2^1p///)(x,J') and lime^0w/ (0 - w(t).

Remarks,   (a) Note that the Gaussian distribution with mean zero and vari-

ance e~2Tjk= p~lTjk satisfies the conditions imposed on R%(dz).

(b) Khas'minskíi and Il'in have shown that there corresponds a Markov

process   {(X(t), Y(t)); t>0}  whose transition density p(x, y, t, xv yx) is the

Green's function for the equation in (21) (see [9, p. 437]).  The above analysis

gives that (X"(0, Y*if)) converges to (X(t), Y(t)) in distribution as pe —* 0

in the prescribed manner.

Application 2.2.  Suppose L is a Banach space, and notation is as given

in Example 2.1 with TV = 2, ql2 = q2l = a > 0; Aj = *  and  Tff) = T(t) for

7=1, 2; and  II/k(e) = IIe = I + eU + o(e) as e^0 for  l</**<2. The

semigroup  Te(t) is now given by

(Te{t)7)¡ = EjlTÇetWmt* -1*)) • • • T\t - et*N(t/e))f]

for / = (/,/), fxnL.

Under the assumptions of Example 2.1 there exists a strongly continuous contrac-

tion semigroup S(t) defined on /?(*) n D(iY) with  lim£^o(7'e(07)/ = 5(0/

for / in D^) ñ D(U).  For B a Banach space of sufficiently smooth functions

in L, we have Wj(t) = (7"e(0/)/ is a bounded solution of

bwe/bt = *we + (a/e)(newe - we),

(2.15)
we(0) = /,      e > 0, t > 0, / in B.

As in the previous application we can obtain w(0 ■ lim^Qwf(f) exists and

equals the bounded solution of
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bw/dt = (^ + al\)w,

(2.16)
w(0)=/,      r>0, / in B.

As an application of Example 2.1 in the above form, we prove a limit

theorem in the following storage theory model.

Suppose we are given a process   {£(r); t > 0} with independent, nonnegative

increments, having jump rate  0 < b < °°, jump times given by  t1,t2, "• , and

with yiy)  the distribution of the magnitude of a jump having two finite mo-

ments.  (We assume that the linear part of £(• ) is zero; the case where this part

is nonzero is treated similarly.) We are also given a Lipschitz, strictly-increasing

function r: [0, °°] —► [0, °°]   satisfying r(0) = 0.  The equation

(2.17) Xt = X0 + %t - f* riXJdu,      t > 0, X0 > 0,

has been analyzed in [2].  Here X0  represents the initial content of a dam; %v

the total input during time   [0, t] ; Xt, the content at time  t; and rix), the

releasing function. The equation (2.17) says that Zt = /0fr(Zu)cf«  is the total

output during time   [0, t]   and that the rate of output at time  u is riXu).  In

[2],   {Xit); t>0}, the unique solution to (2.17) is explicitly written down and

shown to be a normal, standard Markov process.

We prove a limit theorem for the content process in the following setting.

We let  £(f) = £e(r) depend upon e > 0 by having jump rate  be = b/e and

jump-size distribution yeiy) = jiy/e). We show that Xeit) converges to a deter-

ministic process xit) as e —► 0; we do this by showing convergence of the semi-

groups of the processes.

We let L be the Banach space of continuous functions on   [0, °°) vanishing

at infinity, with supremum norm. We define the group  Tit), t > 0, on L by

Tit)fix) = fiqix, t))  where   qix, t)   is the unique solution to    dq/dt =

- r(x)dq/dx,  q0 = x.   The infinitesimal operator of T\f) is ^ = - r(x)3/9x For

e > 0, we define the convolution operators  11(e) on L  by  n(e)/(x) =

So fix + z)y£idz) where 7e(c) = 7(c/e).  Then the transition semigroup of the

content process X€it) has the representation

weit,x)=F¡fix)=E[fiXeit))]

= yj[r(eT,)n(e)r(e(r2 - Tj) • • • T(f - eTN(t/e))fix)]

with infinitesimal generator Ae  given by Aefix) = - rix)of/dx + be'1 [11(e)—/]/

(see [2]).

From these assumptions on ye(y) we obtain  11(e) = / + eu + o(e)  as

e -► 0   where   11/ = pbf/dx, with   u = ffyy(dy), on   F ={/;/,/', /"

are bounded}.   We define    V   on   F ={/=(/, /);/   in   F}  by
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(vj)j = */+ bïlf= (- r(x) + m)bf/bx, / = 1, 2, with m = bp = input rate.

From Theorem 2.1 and through the introductory remarks to this application, there

is a strongly continuous contraction semigroup S(t) defined on L  with

lime_>0P¿/ = 5(r)/ for / in L.   In particular, if w(r) is the bounded solution

of
bw bw

-r- =i* + bll)W = (-rix) + m)1-,

(2.18)
w(0)=/      t>0, f in  C2,

then w(r) = 5(r)/ and lim^QÍV6^) = wit).  From this convergence of semi-

groups we obtain that given Jfe(0) = x, Xeit) converges in distribution as

e —► 0 to the solution qit) of bq/bt = (- r(x) + m)bq/bx,  qiO, x) = x For

another physical interpretation of this model and a generalization to the level of

Application 2.1, see [10].

3. "Central-limit-theorem" type perturbation results with norm conver-

gence.  Let L  be a Banach space.  Suppose   {i/*e)(r); t > 0}   and   {5(i);r>0}

are strongly continuous semigroups of linear contractions on L  with infinitesimal

operators Aie) = A^1^ + eA^ + oie) and B respectively.  Suppose that

{Bit); t > 0}  is a family of linear operators on L  and  IF-1)  and  n^  are

linear operators satisfying

(3.1) P(e)/ = Bf + en(1)/ + e2n(2)/ + o(e2)

for /G flídomainsof B, n(1)  and  II(2)}  and  e i 0.  Assume that B is the

closure of B restricted to   flídomainsof B, A(l\ A^2\ n(1), and  n(2)}. Sup-

pose for each e small, that the closure of A(e) + e_1P(e) is the infinitesimal

operator of a strongly continuous contraction semigroup  Pe(r)  on L.  Other

notation is that of § 2.

Theorem 3.1.  Suppose  Uit), Sit), Bit),  n(1),  II(2), and Te(r) are

given as above.  Assume that \\mx_+0\$Qe~XtSit)fdt = Pf exists for every

fEL.  Define

{/ G R(P); fE V(Añ) H flfjl™)}   for j = 1, 2,

{fED^, 3h e ViB) n ViA^) n p(n(1))

wííft Zflz = -04(1) + n(1))/>,

jK/)/ = prAU) + nO))/    /or / E Djt 7=1,2,

K/ = P04(1} + n(1 >)ft   for / G Z)0.

Suppose rfezr  K(1)/= 0 for all fEDv Assume  R(X - (F(2) + V)) ^D0C\

D2 for some X > 0

(3.2)      Df =

D0 =

(3.3)

(3.4)

(3.5)
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Then there is a strongly continuous contraction semigroup   {7/(0; t > 0}

defined on D0 n D2  with lim£^0T£(t/e)f = T(t)f for all /G£>0 n D2.

The infinitesimal operator of T(t) is the closure of V^ + V restricted

so that (F(2) + V)f£D0 n D2.

Proof.  Let  V£  denote the closure of A(e) + e-1Z?(e), i.e., the infinites-

imal operator of T£(t); hence  e_1 V£  denotes the closure of e~xA(e) +

e~2B(e), i.e., the infinitesimal operator of Te(t/e).

By Theorem 1.10 of [14] and Theorem 2.1 of [12, p. 357]   it suffices to

show

{(f,(V^ + V)f);fGD0nD2}

C \(f, g); 3(/e, g£) G Ve with lim  (/e, e"1*,) = (/ g)\.

That is, given /G/J>0 n D2, we must find f£ G V(V£) and g£ = V£f£ G R(V£)

such that lime^0/e = / and lime^0e_1ge = (F<2) + V)f.

Let /GZ>0 C\D2  and h G V(B) D V(A^l)) n V(Tl^) such that Bh =

-(4(1) + n(1))/   As in the proof of Theorem 2.1, we can find   h£ G

fKdomainsof B, A(l), A(2\ n(1), and  II(2)}   suchthat

lim eV£h£ = P(4(1> + n(1))/î - (4(1) + íi(1))¿

+ PÍA™ + iK2>)/ - (A^ + n<2>)/,

ip(D + iKD^h = o(1/e))    ||^(2) + n(2))/2e|| = o(l/e2),

and

[|/ze|| = o(l/e2),   as elO.

Let f£=f+eh + e2h£. Then

e-^/^e-^Z+Pyj + eF^

= e~lA(e)f + e-2B(e)f + A(e)h + e'lB(e)h + eV£h£

= e~lA(l)f + A<2)f + e~2Bf + e_1 n(1)/ + n(2)/ + A(l)h + e4(2)/z

+ e~lBh + n(1)/z + en(2)Ä + eV£h£ + o(l)

= (4<2> + n(2))/+ (y4(1) + n(1))ft + eV£h£ + o(l)   (as e I 0).

Thus lim^e-1 Fe/e =P(,4(2) + I\™)f + P(A^ + fl^Vz. Given /G/J>0 n

£>2, there are /e G P(Fe) for e > 0 such that lim€_>0/e =/ and lime^.0e_1 V£f£ =

(jJ(2) + v)f.    Q.E.D.
Remark. If fô\\(S(t)-P)f\\dt<°° for all /G¿ and Pg = 0, then the

solution of Bh=-g is given by h = f~(S(t)-P)gdt (see [5, p. 26]). This indi-
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cates how to solve Bh = -(A + U)f in the definition of D0, although, in addition,

the condition hEViA) must be satisfied. See Example 3.1.

Example 3.1. Let £(r), Q = iQaß)> P = (Pa), and Banach spaces L and L

be given as in Example 2.1.

For each / = 1, • • • , N, e > 0, suppose that {TÍe\t); t>0} is a strongly

continuous linear contraction semigroup on L with infinitesimal operator Afe) =

AJ^+eAJ2\ Note that £/<e>(i) and Sit), defined by

(6^(0/); = T¡e\t)f¡,      iSit)f)¡ = £ Pjkit)fk
k=l

for 1 <7<.íV are strongly continuous contraction semigroups on L. lAe'it) and

Sit) have infinitesimal operators Aie) = A^1'+eA^ and B respectively, given by

iA{e)f)¡ = iA^f),- + eiA^f)j = A¡% + eAJ^fj      (= Afôffr

N

(Pf)j=T,«jkfk    for/=l,--- ,/V.
fc=i

For each 1 <j¥=k<N, suppose that  ín/fc(w); u > 0} is a family of linear

contractions on L and UJp and UJk^ are linear operators satisfying

(3.6) n/ft(e)/ = / + enjpf + e2n}2>/ + o(e2)

as e i 0 for / G fl(lTÍ¿>) n f (n}2)) C L. Denote by  0(f); t > 0} the family of

linear operators on L given by

N

iBit)f)j=    Z  qjknjkit)fk+qufi
k=l;k*j

for / = 1, 2, • • • , N.  For i = 1, 2, we define n(/) by

(n«/)-     £   qjkV$fk
k=l;k*i

for /= 1, 2, • • • ,7V and /G f/e L;/fc Gp^), 1 <j<N,j¥=k}. It follows that

(3.7) (P(e)/); = (ßf), + <n<J >/), + e2(n(2)/); + o(e2)

as e i o for /g ^n^1)) n £>(n(2)) n p(7?) = p(n(1>) n p(n(2)).

Now, e_1/4(e) + e~2B(e) is given by

[(e-U(e) + e-2P(e))/]/ = e~lA^f, + ¿f V,

(3'8) +e"2      Z    *)*!**(•>*+**Vi
fc=l;fc#/'
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for / = 1, • • • ,TV. e~lA(e) + e~2B(e) is the infinitesimal operator of the strongly

continuous semigroup Te(t) on  L, defined by

(T£(t/e)f),. = Ej CTfgj (et*)Ut(omtV(e)T^v(e(t* -1*))

(3.9)
•••7}8p(f/B-«5/t(t/tï))

for / = 1, • • • , TV, with if, f*, • • •, t* and i> the jump times and number of jumps

respectively for the process £(«) in the time interval [0, t/e2 ].

We assume that B is the closure of B restricted to Hidomains of A'l\ A^2\

n(1),and n(2)}. As in Example 2.1, we note that limx^0\¡Qe~XtS(t)fdt = Pf

exists for each /G L, where Pf is given by

(2-9) <?/),-= £pkfk
k=l

for / = 1, • • • , TV. In this setting

Dm = y~ iff) e L>fj = w for / = 1, • • • , TV,

(3.10)

and

w G fi       (domains of A™, E^>)1  for w = 1, 2
Ka,i*k<N )

v(m)f=p(A{m) + n<m>)/

(3.11) -f£p^)+    Z     P/^n/?)) w • (i)
\/=l l<j*k<N /

for/=w (l)GDm.

Recall that the notation /= w • (1) means /= (/■) and /• = w for all /' = 1, • • • , TV.

We make the assumption that V^1 '/= 0 for all /G£>j.

We let

D0 = {/en,; 3A g 0(8) n p(¿(1)) n i)(n(1)) = p(/l(1)) n p(n(1))

(3.12)
with Bh = - (A(1) + n(1>)f}.

If we assume that /= w • (1) GD0, and we note that it is true that

(3.13) f™ \Pjk(t)-pk\dt<°°

for 1 </', &<TV(see [4, p. 236]), then the function   h   satisfying  Bh =
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~iA(l) + n(1))/ has the form

hi = JT {isiO-ñiA(1) + n^)f}j dt=± Vjk{iA^ + rt»)f}k
N

z
fc=l

N / N \

fc=l        \ /=l;Z*fc /
aklllkl]w

\;l*k

where for each 1 </, k<N,

(3.14) »jk = fô<Pjkit)-Pk)dt.

We have also assumed here that A G Pf^1*) n P(n^)). That is, we have assumed

that each coordinate fk = w of /= (/fc) is in

fl idomains of A^A$\A^YUlk\ njpAÍ» and Ilfi >!#>}.
l<a,ß,j*k,m±n*iN

We define

(3.15) Vf = PiA^ + n<1))h

for /= f/ft) = w • (1) GZ)0. Under condition (3.13) and with h E ViA{l)) D

17(11**') as required, we have

(ify-E^V     2     P,*/**$\
7=1 l<i^k<N

7=1 Lfc=l Kk^KN

K¡i=k<N \_m = l Km¥=n<N

Hence

l<i,k<N Kj,k*KN

(3.16) + Z P/í/telJ^Í!^
l<7#k,m<JV

+ £ ^fl/fc"fc».?Mnn7fc)n&
1<7* k,m*n<N

We also assume that R(X - (F<2) + K)) DD0C\D2   for some  X > 0.
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Then from Theorem 3.1 there is a strongly continuous contraction semi-

group   {T(t);t>0}  defined on D0 HD2  with lime^0 T£(t/e)f= 7/(0/ for

all /GZ)0 C\D2. The infinitesimal operator is the closure of  V^2) + V  re-

stricted so that   J*2) + V GDnDD0 " ' "!•

4. Perturbation results with  "buc-limits".  Let   {X(t); t > 0}   be a regular

step process with locally compact measurable state space  (E, B). X(t) has

Markov kernel  Q(x, A) on E X B, "holding function"  \(x) measurable on  B

satisfying 0 < X(x) < M < °°, and transition function P(t, x, T).  (For regular

step processes, see [1, p. 63].)

Let L be a Banach space.  For each x&E, let   {Tx(t); t > 0}  be a

strongly continuous contraction semigroup on L with infinitesimal operator Ax.

For each x, y G E with x ¥=y, let   {11^(0; t > 0}  be a family of linear con-

tractions on L and  IL^  be a linear operator satisfying Uxy(8)f = f + 8Uxyf +

0(5) (as Ô i 0)  for /G V(Uxy) C I.

Let L be the Banach space of bounded, strongly measurable functions

f:E-+L with U/H = sup^g^ll/OOII^. We say that buc-lim^_>0+ gx exists

and equals g for gx, g G L if

(i) sup0<x<6||gjj| < °° for some 6 > 0, and

(ii) limj^p+g^Xjc) = g(x) uniformly on compact subsets on E.

Define contraction semigroups   {U(t); t > 0}   and   {5(0; t > 0}   on   L by

(£/(0/)(*) = Tx(t)f(x),      (5(0/) C*) = ff&m, x, dy).
Let the subspace   L0  of  i,  be given and satisfy

,L0ç|/e L|i/(0/and 5(0/are buc-continuous;

f~e-XtS(t)fdte L0, and j^~XtW)fdt G L(j.

We define operators >1  and 8 with domains 0(4) and  0(5)  respectively by

Af = buc-lim        ,~    .  004) = {/G L0; limit exists and ¿/G L0}»
t-*o »

6/= buc-lim **"'*   .  0(5) = {/e L; limit exists and 5/G LJ.
f-»0 »

Note that .4  and B are restrictions of operators defined respectively by

(Af)(x) = Axf(x)

for /G {/G L; /(x)G0(43C) for xGtf, supxeE\\Axf(x)\\ < °°} and

(£/)(*) = X(x) /£{x} ß(x, 4v)/(v) - WM

for /e L
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Define bounded, linear operators   {BQ); t>0} by

Wmtx) = XWfE_[x} <&x- dy)Tlxyit)f(y) - Hx)fix)

for /G P(P(0) = Í/G L0\ Bit)fE L0l The linear operator  n  is defined by

(n/)(x) = Xx) fE_{x}Qix, dy)Uxyf(y)

for /G V(f\), given by

Vin) = {/ g l0 I n/ g L0 ; fiy) g p(n^) for x * ^ g tj;

and sup HÎL, f(y)\\ < °°\

Note that for / G flidomains of B, II, and P(e)}

(P(e)/) ix) = X(x) fE_{x}Qix, dy)Tlxyie)f(y) - X(x)/(x)

+ e\(x)fE{x]Qix, dy)Uxyfiy) - X(x)/(x) + o(e).

Hence,

(4.2) (5(e)/)(.x) = (Bf)ix) + e(n/)(x) + o(e)   (as e ; 0).

We assume that for each e > 0, there is a buc-continuous contraction semi-

group    {Te(t); t > 0}    defined on    LQ    suchthat   iA + e~l B(e)) f =

buc-limt_0((Te(t)f - f)¡t) = V£f.  Assume also that B is the buc-closure of B

restricted to  ViA) n £>(P) n P(II).  Notice that A + e_1P(e) is a restriction of

the operator defined by

HA + e-1Z?(e))/)(x)

(4.3) r
= ̂ /(*) + e-lUx)JE_{x} Qix, dy)iUxyie)fiy) -fix))

for /G {/G Ll/(y) G flf^,) for ^GP;and supy^E\\Ayfiy)\\< °°}.  Also

{^(r); r > 0} is a restriction of the operator defined on   L by

(r£(0/)W = Ex {Txr0)iet*)Ilx/0)xftj)(e)Px(ip(e(r* - ,*))

(4.4)

where  r*, t2, • • ■ , r*  and i> are the jump times and number of jumps for the

process Xis) during the time interval   [0, r/e].

We will need the following theorems.  Theorem 4.1 is an application of
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[13, p. 27]. The proof of Theorem 4.2 is similar to that of Theorem 18.6.2 of

[8, pp. 512-517].

Theorem 4.1. Suppose   {Wn(t); t > 0}, n = 1, 2, • • • , are buc-continu-

ous contraction semigroups on L0 with operators Cnf=buc-\imti0((Wn(t)f-f)/t)

having domain of those functions in L0 for which this limit exists and CnfG L0.

Define

C= {(/, g); 3/„ G 0(C„) with gn = CJn satisfying buc-lim /„ =/

(A  C\ \
v*--*) and buc-lim g„ =g}.

„-►oo « J

Then there exists a strongly continuous contraction semigroup   W(t) on  0(C)

such that  W(t)f = bxic-\imn^Wn{t)f for each /G 0(C) if and only if

R(X -C)D 0(C).

Theorem 4.2. Let 5(0 be a buc-continuous semigroup on   L0  with

operator B defined by Bf= buc-limf_>0((5(0/_/)/0 and with domain of B

as those functions for which this limit exists and Bf G L0.  Suppose the follow-

ing conditions hold:

(i) for each compact set K C E, each  e > 0, and each  t > 0, there is a

compact set K£ = K{e, t, K) such that sup^^Pf/, x, K£) < e; and

(ü) for all /G L0, buc-hmx_0X/¿°e_,u5(0/df = Pf exists.

\Then we have

(4.6) P is a bounded, linear projection ;

(4.7) S(ty? = P5(0 = P for all t > 0;

(4.8) R(P) = n(B), the null space of B;

(4.9) R(B) is buc-dense in n(P);

(4.10) BPf = 0 for all / G L0. PBf=0 for all f G 0(5).

Theorem 4.3. Let E, U(t), 5(0, 5(0, Te(t), II, A, B, and  Ve be as

above.   We assume that

(i) for each compact set K C E, each  e > 0, and each  t > 0, there is a

compact set K£ = K(e, t, K) such that supxeKP(t, x, Kc€) < e; and

(ii)  for a« /G L0,buc-lim^0Xf^e-Xf5(0/£Íí=P/ exists.

We denote by D the set given by

(4.11) D = {/G R(P);/G 0(4) n 0(11)}

uto? define the operator  V for / G £) ôj

(4.12) F/ = P04+n)/
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We suppose that  R(X - V) D D for some X > 0.

Then there is a strongly continuous contraction semigroup   {Tit); t > 0}

defined on D satisfying buc-lim,,^ «,7e(f)/ = 7(f)/ for all fED.   The infinites-

imal operator of {Tit); t > 0} is the closure of V restricted so that   Vf ED.

Proof. The proof is similar to that of Theorem 2.1.  From Theorem 4.1 it

suffices to show

{(/ Vf); fED} C i(f, g); 3/e G V(Ve) withge = Vefe satisfying

buc-lim/- =/ and buc-lim ge = g\,
e->-0      e e->0       e        )

i.e., given fED, we must find fe E V{Ve), g£ = Vefe E R(Fe) such that

buc-limç^o/ç =/ and buc-lime_,.0Fe/e = Vf.

Then, using  R(X - V) 3 D, we have that there exists a strongly continuous

contraction semigroup   {7(f); t > 0} on D suchthat buc-lime^.07e(f)/= 7(f)/

for each fED.  From Theorem 4.1 it also follows that the infinitesimal operator

of 1\t) is the closure of  {(/, g); /G ViV), g = Vf, and /, g G Z)}, i.e., the

closure of  V restricted so that   Vf ED.

Recall that B is the buc-closure of B restricted to  ViA) n #(11) n £>(P).

Hence for g in the buc-closure of R(P), there exist /ze G ViA) D P(P) n 0(11)

such that buc-lime_>0Pfte = #, and, if necessary by relabeling the index set, such

that  ||(4 + n)fte||=o(l/e) and  ||Ae|| =o(l/e).  Hence

buc-lim eV.h. = buc-lim CeAhe + P(eVzc)
e-»0 e  e e-+0 e e

= buc-lfan (e(A + Tl)he + Bhe + oie)) =g.

From Theorem 4.2 we obtain for fED that PÇA + II)/- (A + U)f is

in the buc-closure of R(P); and hence we can choose   {he} C VÍA) n P(II) O

ViB) such that buc-lime^0eKeÄe - PÍA + IT)/- (4 + n)/, with  ||Ae|| = o(l/e)

and  \\Ahe\\ = o(l/e).  Also from Theorem 4.2 we have for fED that  VJ =

iA + e~lBie))f = Af + 11/ + o(e)/e.

If we set fe =/+ e/ie  then buc-lim^o/,, =/ and

buc-lim VJ. - buc-lim (KP / + eFJï.)
e-»0      e  e e-»0        e £  e

= bucJim HA + U)f+eVehe + o(l)) =PG4 + lT)/ = F/

Thus, given / G D, there are fe E ViVe) for elO satisfying buc-lime|0/e =/

and buc-lime;oF£/e = Vf.    Q.E.D.

Let Xit), L, and  L be given as before. For each jc G E, e > 0, let

{7j^(f); f > 0} be a strongly continuous contraction semigroup on L with in-
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finitesimal operator satisfying Ax(e)f = Axl>f + eAx2V + o(e) as e i 0 for

/G Hidomains of Axl\ Ax2\ and ^^(e)}.  Suppose that for each x, y G E,

x^y, {Uxy(u); u> 0} is a family of linear contractions on L and  ílx'y isa

linear operator satisfying  Ilxy(e)f = f + elltyf + e2!^/ + o(e2) as e i 0

for /G0(ng>)n0(n(2>).

Define contraction semigroups   {5(0; t > 0} and   {£/(e)(0; t > 0}, e > 0,

on  L by

(£/<e)(0/)(*) = Txe\t)f(x),     (S(0/)(x) = //(y)P(i, x, dy).

Let the subspace   L0  of L be given and satisfy

L0 ç|/G Lltf(e)(0/ and 5(0/ are buc-continuous;

f~e~XtS(t)fdt G L0; andJ7e"Xf^e)(0/^e L0 fore>o|.

We define operators A(e) and 5 with domains 0(4(e))   and   0(5)   respec-

tively by

A(e)f= buc-lim-li^L,  0(4(e))= {/G i.0;limit exists and^(e)/G i.0},

6/ = buc-lim ?MZL ) p(5) = {/e Lq ¡ iimit exists and 5/G L0}.

Note that .4(e) and 5 are restrictions of operators defined respectively by

(4(e)/)0O = Ax(e)f(x) = A« >/(*) + erff >/(*) + o(e)   (as e ; 0)

for /G {/G L\f(x) G 0(4</>) n V(Ax(e))   for   jc G 5,   / = 1, 2;   and

suPxei^i.al^/tolK00} and

(Bf) (x) = Hx)fE{x} Q(x, dy)f(y) - X(x)f(x)

for /G L.

Define bounded linear operators   {5(0; t > 0} by

(5(o/)(x) = X(x) /£_ wß(*. «0MO/Ö0 - Kx)f(x)

for /G 0(5(0) = {/G L0; 5(0/G L0}.  The linear operator  II(/)   for 7 = 1,2

is defined by

(n<'>/)(x) = X(x) fE_{x}Q(x, dy)Yl$f(y)

for /G 0(n('>), given by P(II<») = {/€ L0in(/)/G L0; f(y) G 0(ITg>)  for

x * y EE; and sup^^n^/OOH < °°}. Note that for /G f|{domains of 5,

n(1), II<2), and 5(e)}
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(Z?(e)/)Oc) = X(x) fE_{x}Qix, dy)Ylxyie)fiy) - X(x)fix)

= Xx)fE{x]Qix, dy)fiy) + e\(x) J£_ [x}Qix, dy)n^fiy)

+ e2X(x) fE_{x}Qix, dy)Ylx2Jfiy) - X(x)/(x) + o(e).

Hence,

(4.14)

iB(e)f)ix) = (Bf)ix) + efTI*1 >/)(*)

+ e2(n(2)/)(jc) + oie2)   (as e 4- 0).

We assume that for each e > 0, there is a buc-continuous contraction semi-

group   {7e(f); f > 0} defined on   L0   suchthat   (4(e) + e-1P(e))/=

buc-limt^0HTeit)f-f)/t) = Vef.   Assume also that B is the buc-closure of B

restricted to flidomains of AU), II(/), and B, j = 1, 2}.  Notice that /1(e) +

e-1Z?(e) is a restriction of the operator defined by

(04(e) + e~lBie))fXx)

(4-15) =Ax(e)fix) + e-'A(x)/£_wßK dy)iUxyie)f(y) - fix))

for /G {/G L\fiy)EViAyie)) for y EE; andsup^M,(e)/(>)|| <°°}.Also

{Teit); t>0]   is a restriction of the operator defined on   L  by

(7e(f)/)(x) = ^{7^0)(ef*)nx(0)^(f.)(e)7gfî)(e(f* - ff))

(4-16) ... T(e)    (t-£t*\f }
ÂX(t*Y-1     elt>'JX(t/e)s-

Theorem 4.4. Assume in addition to the above that

(i) for each compact set K C E, each  e > 0, and each  t > 0, there is a

compact set Ke = K(e, t, K) such that supxeA-P(f, x, Kce) < e; and

(ii) for all fe L0,buc-limx^0\fôe~KtSit)fdt = Pf exists.  Define

(4.17) D, = {fER{P);fEViA^) n 0(n('>)}    (for / = 1, 2),

(4.18)
Z)0 = {fEDx; lh E ViB) n ViA{l)) n p(n(1))

w/fft PA=-C4(1) +n(1>)/},

(4.19) V(nf = PiAU) + n(/))/   ifor fED¡),

(4.20) F/=PG4(1) 4-n(1))A   (for fED0).

Assume that   F(1)/= 0 /or a// /efl,  and inaf  R(X - (K(2) + J?)) DD0ni>2

/or some X > 0.
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Then there is a strongly continuous contraction semigroup   {7/(0; t > 0}

defined on D0 n D2  with buc-Yxm£^0T£(t/e)f = 7/(0/ for all feD0 n D2.

The infinitesimal operator of T(t) is the closure of V^2 * + V restricted so that

(i/(2) + V)feD0 HD2.

The proof is like that of Theorem 3.1 with limit changes introduced as in

the proof of Theorem 4.3.  Note that the remark given after the proof of Theorem

3.1 holds here also.

Example 4.1.  Let   {X(t); t > 0} be a temporally homogeneous, positive

recurrent Markov chain with state space  E = {1, 2, 3, • • • }.   {X(t); t > 0} has

generator Q = (qjk), j,k&E,  0<qjk<°° for /#*,   Hk=x.ki:jqjk = -qfj

< °°; transition probabilities (pk(0; t > 0), /', k G 7Z; and stationary probability

distribution  (pk), k& E, where  lim^«, p¡k{t) = pk. Assume that sup/e£ \q-\ < °°.

Let the spaces and operators in the hypothesis of Theorem 4.3 be given. These

operators now take on the following form

(0

00

Wify-Tfcyfi and (mf), = ̂ ifkP/k(t)

with {Af)rAifi and {Bf)rl,k=lqjkfk,

(5(0/)/ = Zï=hk^qjknjk(t)fk +q„fJ and (TI/)/ = J^jj+fl,* V*

with (5(e)/), = (5/); + e(n/);. +o(e),

((A + e-iB(e))f)j = Aifj + e"'2~ ltk^qiknjk'e)fk + e"1^/} and

(hi)     (T,{t)f)rEj[Tm}(et*) nx(0Wfr)(e)7V(fp(e(i* - if))

'•'Tx(t;)Q-et*)fxit/£)].

Theorems 2.1 and 3.1 do not apply in this situation.  Condition (2.2) does

not hold; for /et, \jQe~XtS(t)fdt does not converge in the strong topology

as X-+0.  But buc-limx^0X/ô<rx,5(0/d/ = P/ exists and (Pf)f « S^ty/,.

Also for each compact set (finite set) K, each  e > 0 and each t > 0, we can

use  Zk=1pjk(t) = 1   to obtain a compact set K£ = K(e, t, K) such  that

supx(=KP(t, x, Kce) < e.  Recall that 5 is assumed to be the buc-closure of 5

restricted to  0(4) n 0(11).

In this setting

D = J/G L0I// = A   for 7 G 5; Ä G        f|       (domains of 4a, Il/fc);
/ a.f^keE

sup H-4, All < °°; and sup \\U.jkh\\ < °°
/ /*fc ]

and for /=(//) = 0) ^ A
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ivnm = ípía + n)/)m = Z P¡Ajh +    Z    PjiikV-
7=1 i<7*k<<»

Finally, assume  R(X - V) D D for some  X > 0.

Then by Theorem 4.3 there is a strongly continuous contraction semigroup

{7(f); f>0} defined on D with buc-lime^07e(f)/= 7(f)/ for all fED. The

infinitesimal operator of TQ) is the closure of  V restricted so that  Vf ED.

Example 4.2.  Let   {Xit); t > 0} be the Markov chain with state space

E= {1, 2, • • •} given in Example 4.1.  Let the spaces and operators in the

hypotheses of Theorem 4.4 be given. These operators now take on the following

form

(tf(e)(0A= lje)®fj  and (W>7 = 2^=1/fcp/fc(f)

with iAie)f)j=Ajie)fj and (Bf), = ̂ =lq¡kfk.

(ii) W)A = ̂ L^/^n/^)4 + <?///, ̂diU(Of)j = XZ1^jq¡k^fk,i= 1, 2,

with (B(e)f} = iBftj + eill^f); + e2(n(2>/); + o(e2), as e 4 0.

(04(e) + e-ipfe))/} = Aft)ff + e"12^1>fe#/(?/fcn,.ft(eyfc +e"1%^ and

Ou)    (7e(f)/)/ = ̂ {7<t!(>0)(ei*)nx(0)x(fp(e)7^()ip(e(f*-f*))

•'•^^-O/^r/e)}-

(iv) (P/); = Z P//,.
/=i

7»/={/GL0l//t=wforÄ:GZf;

we^^EÍdomainsof^, n<£,):

and supa,m*HeEQ\A<Pw\\ V »I!« w||) < «} (/ = 1, 2).

(V)      Z)0 = {/GZ^ |3A G f\m^„(domains of 4*>, n£>) with

a& = (i4(1)+II(1))/}.

(F<»/)ft = s-=1p^tf)w + z1<lfl^<M|pMÎMHnœ w

(for *€£/ = 1,2,/eZ),).

We assume that P is the buc-closure of P restricted to f)(domains of B,A^\

A{2), n(1), and  n(2)).  We also assume that (F(1)/)y- = 2~=1 paAaw +

^i<a¥=ß<'»Paaaß^aßw - 0 for all /= w • (1) G Z)j.  Note that conditions (i)

and (ii) of Theorem 4.4 hold, as in Example 4.1.
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We assume that the following condition holds:

(4.21) J"JI pjk(t) -pk\dt<°°   for all  1 < /, k < °°.

For each  1 </', k < <*>, we denote vjk = fô(Pjk(f)- pk) dt.   If we assume

that /= (/}) = w • (1) £/)„, that sup^S^U^«^1* + I^1^/)*!!) < °°,

and that A  is the function satisfying /z G 0(4(1)) n 0(I1(1)) with 5A =

-(4(1) + fl(1))/, then we have that A  has form

hi= /0"{(5(0 -PX^4(1) + rK1 >)/},. di = £ V/k«A(i) + n'1*)/)*

= f "/*41>w +    S    ^^n(»)w.
fc=l K/*fc<oo

Note that the condition A G 0(4<1)) n 0(fl(1)) implies that

(i) A, = ¿ i^'w +      g       »/»««ng^ G 0O4}1)),

(ii)    sup||^1)A/.|| = suPL;i){fI;/fc4^)w+     £     v/kgMTlWw)\\<°o,

(iii)  For each 1 < i < °°,

Ay = £ "/fc^w +      Z       "/fc9*/41> e W^), and
fc=l Kfc#/<~ '

(iv)    sup||ny)A/.|| = sup|k1>{fI'/fc4ll)W+     Z     Wtrfa* }|<~.

Define   K/ = P(/4(1) + fI(1>)A  for /= (fk) = w • (1) GD0.  Under condition

(4.21), with A G 0G4(1)) n 0(n(1)) as required, and with

sup /.£ Il"/fc((^(1) + n(1))/)fc||) <°°

we have

(p/)/-Zp/^/î1)a/ + i  E    P/^n)^Afc

/=1 lfc=l Kfc#/<~ I

!</>it<oo i »1 = 1 1<IM*7I<~ V
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Hence,

7=1 (fc=i )

Z^H   Z   "/***.n<*>j
7=1 (l<fc*/<°° I

(4.22)

+     Z      Pflfltf?    Z^<n
l<7*fc<<»    ' (m = l

W

1 </#*<<» (l«m=Én<°° J

Then from Theorem 4.4 there is a strongly continuous contraction semi-

group   {7(f); f>0} defined on D0 n D2  with buc-lime^07e(f/e)/= 7(f)/

for all fEDQC\D2.  The infinitesimal operator of 7(f) is the closure of

K(2) + V  restricted so that (F2 + V)ED0 C\D2.
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