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ABSTRACT. For € > 0 small, let US(f) and S(r) be strongly con-
tinuous semigroups of linear contractions on a Banach space L with infinites-
imal operators A(e) and B respectively, where A(€) =A(l) + eA(z) + o(e)
as €—> 0. Let {B(u); u= 0} be a family of linear operators on L satisfying
B(e)=B + el'l(l) + ezn(z) + 0(62) as € - 0. Assume that A(e) + e_lB(e)
is the infinitesimal operator of a strongly continuous contraction semigroup
Te(t) on L and that for each f€& L, limy_,gA f: e_MS(t) f dt = Pf exists. We
give conditions under which T(¢) converges as € = 0 to the semigroup gener-

ated by the closure of P(A(l) + H(l)) on R(P) N D(A(l)) n D(H(l)). If
P + 1Myr=0, Br =~ 4D + 1M)f, and we tet Pr=pPD + 1)n, then
we show that T (t/e)f convergesase— 0 to the strongly continuous contraction
V@ 4 7.

From these results we obtain new limit theorems for discontinuous random

semigroup generated by the closure of

evolutions and new characterizations of the limiting infinitesimal operators of the
discontinuous random evolutions. We apply these results in a model for the ap-
proximation of physical Brownian motion and in a model of the content of an
infinite capacity dam.

1. Introduction. The perturbed semigroup limit theorems in this paper are
motivated by results on discontinuous random evolutions. Let X(¢), ¢ =0, be
a finite-state, continuous-time Markov chain with values in {1,2,*+*, N} 7y,
75, ***,7, and v denote the transition epochs and total number of transi-
tions before time /e for the process X(f). Foreach 1<j<N,let Ty(r) be
a semigroup of linear contractions on a Banach space L; foreach 1 <j# k<N,
let I;(u), u >0, be a family of linear contractions on L satisfying I (e)f =
f+ell,f+o() as e>0 for f€ D(ij). We define the discontinuous ran-
dom evolution by
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M) = Ty oy )My 0y xr ) OTx (rp) €2 = 71))

* i, xa)@Tx(r )~ €1,).

Investigations of lim,oE; [M (Dfx (/)] and lim.E; [M (t/e)f, ¢ /62)] are
motivations for and are shown to be applications of the perturbed semigroup
limit theorems presented in §§2 and 3.

In §2 an application of the limit theorems for discontinuous random evolu-
tions is given to the approximation of physical Brownian motion by the motion
of a macroscopic particle within a medium of microscopic particles. Another
application is made to the approximation of the content of an infinite capacity
dam as the random epochs of rainfall become more frequent and random quantity
of rainfall per occurence diminishes. Limit theorems for discontinuous random
evolutions in which the “controlling” Markov process is a regular step process
rather than a finite-state Markov chain constitute §4. Instead of the norm con-
vergence used in §§2 and 3 we use buc-convergence, i.e., convergence of bounded
families, uniformly on compact sets, in §4. In all applications of the limit
theorems to discontinuous random evolutions we give new characterizations of
the limiting infinitesimal generator.

In [6] Griego-Hersh introduced “continuous” random evolutions, i.e.,
random evolutions without the presence of the “jump operators” Il;;, and used
this concept to prove singular perturbation theorems. Perturbed semigroup limit
theorems motivated by continuous random evolutions were proved by Thomas G.
Kurtz [14]. Pinsky introduced discontinuous random evolutions as a representa-
tion for multiplicative operator functionals of a Markov chain in [15] and showed
in [16] that M (¢) is the unique solution to the linear operator equation

MO =1+ [ M@Myodi+ T Mer) iy, e © =1

0<r;<t/e

where, for 1 <j <N, 4; is the infinitesimal operator of T,-(t). The author
has proved limit theorems for discontinuous random evolutions using other tech-
niques and has applied these results to singular perturbation theorems and to
central limit theorems for Markov processes on N lines [10], [11]. Surveys of
the literature on random evolutions are given in the papers of Pinsky [16] and
Cogburn-Hersh [3].

2. “Weak-law-of-large numbers” type perturbation results with norm con-
vergence. Let L be a Banach space. Suppose {U(t); ¢ =0} and {S(¢); ¢ >0} are
strongly continuous semigroups of linear contractions on L with infinitesimal opera-
tors A and B respectively. Suppose that {B(f), t =0} is a family of linear operators
on L and I is a linear operator satisfying
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2.1 B(e)f = Bf + €llf +0(€)

for fEeDPB)NDAI) and € ! 0. Take B to be the closure of B restricted
to D(A4) N D(B) N D(D). Suppose for each € > 0 small that the closure of
A + € 1B(€) is the infinitesimal operator of a strongly continuous contraction
semigroup T.() on L.

Notation is that of [12]. A possibly multivalued operator A is written
as a set of ordered pairs 4 = {(x, ¥); 4x =y}, with D(4) = {x; (x, y) €A}
and R(4) ={y; (x, y) EA}. We use lim,_,(x,, »,) = (x,y) to mean
lim,_, X, =x and lim,_.», =y. Limits here and below are taken to be
strong limits. Proofs use techniques found in [14].

THEOREM 2.1. Suppose U(t), S(9), B(t), I, and T,(t) are given as above.
Assume that

22 tim A f:e"“S(t)fdt =pf
exists for every fE€ L. Let

23) D= {f € RP); f € D(4) N D)}
and define for f€D

@4) Vf = P4 + DS,

Assume that f(?\——_ﬁ DD for some N> 0. Then there is a strongly
continuous contraction semigroup {T(t); t = 0} defined on D with
lim,oT.(t)f = T()f forall fE€ED. The infinitesimal operator of T(t) is the
closure of V restricted so that Vf € D.

PrOOF. Let V, = closure of 4 + € B(e) = infinitesimal operator of T,(¢).
From Theorem 1.10 of [14] and Theorem 2.1 of [12, p. 357], it suffices to
show

{f, Vf),feD} C {(ﬂ 8); I(fe,8.) E V. with gi_rg})(fe,ge)=(f,g)},

ie., given f€ D, we must find f, € D(V,), g =V.f. € R(V,) such that
lim._,of, =f and lim., .8, = V. For then, using R(\ — ¥) D D, we have
that there exists a strongly continuous contraction semigroup {7(¢); ¢ = 0} on
D such that lim._, o T.(f)f = T()f for each fE€ D. From this theorem it also
follows that the infinitesimal operator of T(f) is the closure of {(f, g);(f,8)EV
and f, g €D}, ie., the closure of V restricted so that Vf € D.

Recall that we are considering B as the closure of B restricted to D(4) N
D(B) N D(I). Hence for any g € R(B), there exist &, € D(4) N D(B) N D(IT)
such that lim,_, oBh, = g, and, if necessary by relabeling the index set, such that,
in addition, [I(4 + IDAll = o(1/e) and |ia |l =o(1/e) (see §A.4 of [10]).
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Hence lim,_ eV h, =g since
lleVeh, — sl = lledh, + B(e)r, — gll < lledh, + Bh, + €llh, — gll + o(€)

< elldn, 4 I\l + lIBh, — gl + o(e) = IBh, — gll + o(e).

From Theorem 18.6.2 of [8, p. 516], we have that P is a projection and R(B)
is dense in n(P), the null space of P. Hence, if f€D, P(4 + )f - (4 + I)f isin
R(B), and we can choose &, € D(4) N D(B) N D(IT) such that lim._, eV h, =
PA +1Df - (A4 + I)f, with |k ]l = o(1/€). Also from this theorem, R(P) = n(B);
hence, since f€D we have V.f= (4 + € 'B(e))f = Af + IIf + o(e)le. If we
set fo=f+eh, then lim.,,f, =f andlim._,V,f. = Vf, where we use the
inequality

W, fe = VA=V f+ eV h, —PA + D]

<Ii(4 + Mf + eV, —P(A + DIl + o(€)/e = o(1).

Thus, given f € D, there are f, € D(V,) for e I 0 satisfying lim_of. =f
and lim_,,V f.=Vf QE.D.

REMARK. Theorem 2.1 remains valid if we replace U(f) by U€)(¢) in
Theorem 2.1, where U(e)(t), for each € >0, is a strongly continuous semigroup
of linear contractions on L with infinitesimal operator A(e) satisfying A(e) =
A+o(1) as € — 0, and if we then assume that A(e) + € 'B(e) is the infinites-
imal operator of a strongly continuous contraction semigroup T,(f) on L.

ExAMPLE 2.1. Let {{(¢); ¢ > 0} be a time-homogeneous, irreducible
Markov chain with values in E= {1,2,+++, N}. We assume £(¢) has gen-
erator Q = (qqg), 1 <o, B <N, stationary distribution (p;), 1<j<N, and
transition probabilities {p;(¢); ¢ >0}, 1 <j, k <N.

Suppose for each 1 <j <N, that T(7) is a strongly continuous, linear,
contraction semigroup on a Banach space L with infinitesimal operator A,-. Let
L be the Banach space of functions f: E= {1,2,*++, N} — L, with ||fll =
max, ¢j<p I fjll,. The operators {U(); t = 0} and {S(t); > 0}, defined by

WON =T CON= 2 ppdfy fori=1,:,N

are strongly continuous linear contraction semigroups on [. U(¢) and S(¢)
have infinitesimal operators A and B respectively, given by (Af )y =A4;f; and
(Bf)l- = El<k<qukfk for j=1,+°+,N.

Suppose for each 1 <j# k <N, that {Il;,(#); 2> 0} is a family of
linear contractions on L and II;, is a linear operator satisfying
2.5) i(€)f =1 + €Ml f + o(e)

as €30 for f€ D(Hik) C L. We denote by {B(f); ¢ > 0} the family of
linear operators on L given by
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N

BON= X apixOfi +4;f;

k=1,k#j

for j=1,+++,N. We define the operator II by
N

= X S

k=1,k#j
for j=1,*++,N and for fE€ {fE L;kaD(l'lik) for j=1,+++,N,j#k}
Then it follows that

(2.6) Be)); = (Bf); + (Tl f); +o(€)

as €10 for f€ D) N DB = D).
The operator A + € 1B(€) is given by

N
Q7  [A+e'BENfl= 4,5+t X qply@fy +elq; f;

k=1,k#j
for j=1,+++,N, €>0. A+ € !B(e) is the infinitesimal operator of the
strongly continuous contraction semigroup T.(¢) on L, defined by

T.OfN;= Ej[TE(o)(et: )ﬂg(o)g(,;)(G)Tg(,;)(e(@ —-t1)

0 Tean (=)o)

for j=1,+++,N, €>0, where t},¢3,°++,t; and v are the jump times
and number of jumps for the process £(u) in the time interval [0, ¢/e].

We assume that B is the closure of B restricted to (4) N T(II). In checking
that the conditions of Theorem 2.1 are met, we note that lim,_, gAfo’ e—’“pik(t)dt =
Py implies that lim, , A\fge M S(f)fdt = Pf exists for each f€ L, where P is
given here by

N
(2_9) (Rf)j= z pkfk
k=1
for j=1,2, ¢+, N. In this setting

D={f€L;f,=w for j=1,°*+,N,

(210 w€ [\ (domains of A, I }
1<a,j*k<N
and
N
@11) Vf=PA +)f= <Z pA;+ X p,q,,,njk>w - (1)
=1 1<j#k<N

for f=w+ (1) in D. The notation f=w * (1) means f=(f;) and f;=w
forall j=1,+++,N. Finally, we assume that RQA— V) D D for some A> 0.
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Then, by Theorem 2.1, there is a strongly continuous contraction semi-
group {T(9); t >0} defined on D with lim, T (8)f = T()f forall fE D
The infinitesimal operator of T(f) is the closure of V restricted so that VfED.

APPLICATION 2.1. We consider the motion of a particle a,,, of mass m,
moving in a one-dimensional medium. We suppose there are several position-
dependent fields of force which act in the medium. We assume that the medium
also contains homogeneous particles a,,, of mass u and with several possible
velocity distributions given, independent of the motion of a,,. The motion of
a,, is to be determined by one of the force fields between collisions of a,, with
particles a, and at collisions is to be given by the “law of elastic impact.” We
assume that collisions occur “randomly” (see [9, p. 421]).

Specifically, functions F,: R — R, 1< a <N, represent different force
fields, and are assumed to be Lipschitz, twice continuously differentiable, and
bounded. We let {£(¢); ¢ = 0} denote a Markov chain taking values in
{1, <+, N} and with generator Q = (qik). We assume the hypotheses and
notation with respect to Q and £(*) which are given in Example 2.1. For
each 1 <j# k<N, the family {n;(j, k)};>, of independent, identically dis-
tributed random variables represents one of N(NV — 1) possible velocities of the
particles @,,. These families of random variables are independent of each other
and of the cham £(+), with family {n,(, k)};5, having distribution function

R (y). We define the position-velocity process {Z*(@) = (X*(), Y(9)); t = 0}
starting at (x, ¥) by (X*(2), Y*(2)) = (x,(2), y,(¢)) for t* <r<i* F1e j=0,
where S(t*) a and (x,(7), y,(t)) is the solution at t1me t of the system

ax, dya

@.12) @ e e T

%§%) = XA Yalt) = YU

and at the times ¢ = t}", X*(¢) remains continuous and equals X*(¢t —) =
X*(t +), Y*(¢) is to be right-continuous, with Y*(¢) = Y“(t* -) +
v, ), £()) — YH(¢f ) where v =2u/(m + p), according to the law of
elastic impact (see [17]). Note that {(X*(z), Y*(9)); t = 0} is a Markov process.
We prove a limit theorem for this process in the following setting. We let
() = £.(¢) depend upon € >0 through its infinitesimal generator Q. = elQ
and foreach 1 <j# k<N let R,k(dz) R k(dz) depend upon € and sat-
isfy JzR,(d2) =0, p fz*R5(dz) = T}y, = constant, and lim_,ouz/lz*Rf,(d2)
=0, for mass u=pu, =¢€. Foreach ¢, the gas is at rest (E{n{(j, k)}=0) and the
kinetic energy of the system is constant while the process remains in any given
state, but may vary from one state to another (E'{u (nf(, k)?}= .k). In the
limiting operation, we are letting mass u, —> 0, average velocities of @, — +
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(but require constant temperatures), and collision rates — qu =- qji/e — + o0
(but require constant viscosities proportional to a; == 2q;; = 2q;u.). Using
Theorem 2.1, we show that under these conditions Z*€(f) converges in distribu-
tion to physical Brownian motion; we do this by proving convergence of the semi-
groups of the processes.

Let L = space of bounded, continuous functions on R? with supremum
norm; C™ = space of n-times continuously differentiable functions on R? with
bounded support; and D" = space of bounded n-times differentiable functions
on RZ%.

Foreach 1<j<N, {T(¢);#>0} represents the linear contraction semi-
group on L defined by Ty(5)f(x, ) =f (x;(¢, x, »)), with infinitesimal operator
A; given by A;f(x, y) =ydffox + F{(x)3f/day on D'.Foreach 1<j#k<N,
{Il;;(); » > O} represent linear contractions on L defined by

L0 )= 16y + vz~ IR, @2).
From [9, p. 422] and [16, §1.3], we have the representation
Wilt, %, 7) = Elfye (@ €)1 2°(0)= (5, »), £(0) =/] = X)),

=ETeo) DM opeepy @ Terpy €3 ~ 1)

* Teteqrep ™ ool Z 0= (,3), £0) =1}
for the semigroup of the (Z"€(¢), £€()) process and for the solution to the
initial value problem
5 = A;wi + c k*Z#.qjkl'lik(v)wg +q;;wj>
(2.13) alad

wi0)=f;, 1<j<N, t>0, f; in C".

For each 1 <j# k <N, from the assumptions on Rfk(dz), we obtain that
I; () = I + €Il +o0(e) as € —>0 on D3, where II; is defined by

_2 of 2*f
0 f (x, y)-,—,,[—yg +(T,-k/m)ay—2 .
Ontheset D={f€ L;f;=w in D3 1<j<N} we define ¥ by

N
(VF), = 2 pjA;w + > piqj w
=1 1<j#k<N

oy OW w, el ow ?w
=y 3 TF® % + m[ Y 3 + (T/m) ayl]
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for 1 <n <N with FX) = E}!l piF(x), a = Ejl‘;lplai, and T =
(2/0)Z, <j2k<nPjdjiTjx- Since V satisfies the conditions of Theorem 2.1, there
is a strongly continuous contraction semigroup {7(¢); ¢ = 0} defined on Q=
{f€L;fi=wisin L,1<j<N} satisfying lim._,T.(t)f = T(*)f for all
fFEQ. Welet S(f): L — L represent the strongly continuous contraction semi-
group defined by S(H)w = (T(?)f); for f=w (1) in Q and extend the set on
which convergence holds (see [7, Corollary to Theorem 1]). We obtain
lim,_, (T () ) = S(t)Zf,":lpafa for f in L. The infinitesimal operator of
T(#) is the closure of V. In particular, if w(t, x, ¥) is the bounded solution of

w_ ow, poow o[ ow 2
ar Pax TEO T [ Yy * (T/m)ayz]’

(2.14) N
w(0) =2 p;f;, =0, f; in C3,
=1

then w(t, x, y) = SONEY, p;f)(x ») and lim_,owf (2) = w(b).

REMARKS. (a) Note that the Gaussian distribution with mean zero and vari-
ance €2 T, = ;' Ty, satisfies the conditions imposed on RS, (dz).

(b) Khas'minskii and I'in have shown that there corresponds a Markov
process {(X(z), Y(z)); ¢t > 0} whose transition density p(x, y, ¢, x,, y,) is the
Green’s function for the equation in (21) (see [9, p. 437]). The above analysis
gives that (X*(7), Y*(#)) converges to (X(¥), Y(9)) in distribution as u, — 0
in the prescribed manner.

APPLICATION 2.2. Suppose L is a Banach space, and notation is as given
in Example 2.1 with N=2, q,, = g5, =a>0; 4;=¥ and T(t)=1(t) for
j=1,2;and My(e)=MN =I+¢ell +o0(c) as e—0 for 1 <j#k<2. The
semigroup T,(t) is now given by

(T(OF ) = Ej[TEetHNT(e(e3 = 1) ==+ Tt = ethy(yyep)f]
for f=(f,f), fin L

Under the assumptions of Example 2.1 there exists a strongly continuous contrac-
tion semigroup S(¢) defined on D(¥) N D) with lim ., o(T () ); = SOf
for f in D(¥) N D(Il). For B a Banach space of sufficiently smooth functions
in L, we have wf(t) = (Te(t)?)i is a bounded solution of

owefot = Iws + (afe)(TI€we — w),
(2.15)

wé() = f, €>0,t>0, fin B

As in the previous application we can obtain w(f) = lim__,,wi(f) exists and
equals the bounded solution of
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ow/ot = (¥ + all)w,

(2.16) w0)=f t>0, fin B

As an application of Example 2.1 in the above form, we prove a limit
theorem in the following storage theory model.

Suppose we are given a process {£(¢); ¢ = 0} with independent, nonnegative
increments, having jump rate 0 <5 <o, jump times given by 7,,7,,***, and
with y(y) the distribution of the magnitude of a jump having two finite mo-
ments. (We assume that the linear part of £(+) is zero; the case where this part
is nonzero is treated similarly.) We are also given a Lipschitz, strictly-increasing
function r: [0, ] — [0, =] satisfying #(0) = 0. The equation

t
2.17) X, =X, +&- [ rX)du, 30, X, >0,

has been analyzed in [2]. Here X, represents the initial content of a dam; §&,,
the total input during time [0, ¢]; X,, the content at time ¢; and r(x), the
releasing function. The equation (2.17) says that Z, = [§r(X,)du is the total
output during time [0, #] and that the rate of output at time u is r(X,). In
[2], {X(?);t = 0}, the unique solution to (2.17) is explicitly written down and
shown to be a normal, standard Markov process.

We prove a limit theorem for the content process in the following setting.
We let £(f) = £€°(H) depend upon € > 0 by having jump rate b, = b/e and
jump-size distribution 7v,.(y) = ¥(y/e). We show that X*(f) converges to a deter-
ministic process x(f) as € — 0; we do this by showing convergence of the semi-
groups of the processes.

We let L be the Banach space of continuous functions on [0, =) vanishing
at infinity, with supremum norm. We define the group 7(#), t = 0,0n L by
TOfx) = f@q(x, ¢)) where q(x, ¢) is the unique solution to dg/ot =
= r(x)oq/dx, gy =x. The infinitesimal operator of T(¢) is ¥ =-—r(x)d/ox. For
€ > 0, we define the convolution operators II(e) on L by I(e)f(x) =
Jof(x + z)v.(dz) where 7y .(c)=(c/€). Then the transition semigroup of the
content process X¢(¢) has the representation

wé(t, x) = P; f(x) = E[f(X*(£))]
= E[T(eTl MI(e)T(e(r, — 7'1)) cee T(t - GTN(t/G))f(X)]

with infinitesimal generator A€ given by ASf(x) =—r(x)of/dx + be ! [II(e)-1]f
(see [2]).

From these assumptions on 7.(y) we obtain Il(e) =1 + €Il + 0(e) as
e — 0 where IIf= pdffox, with p=[yy@), on F={f;f " f"
are bounded}. We define ¥V on F = {f=(f f);f in F} by
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(V1) =¥f +bIIf = (- r(x) + m)dffox, j=1,2, with m =bu = input rate.
From Theorem 2.1 and through the introductory remarks to this application, there
is a strongly continuous contraction semigroup S(¢) defined on L with

lim,_, oP;f=S(®)f for f in L. In particular, if w(t) is the bounded solution

of

%}ui =¥ +bllw=(—r(x) + m)%}:,
(2.18)

w)=f, t=0, fin C3,
then w(®) =S(®)f and lim,,owé(f) = w(t). From this convergence of semi-
groups we obtain that given X€(0) =x, X°(t) converges in distribution as
€ — 0 to the solution q(t) of dq/dt = (— r(x) + m)dq/dx, q(0, x) =x. For
another physical interpretation of this model and a generalization to the level of
Application 2.1, see [10].

3. “Central-limit-theorem” type perturbation results with norm conver-
gence. Let L be a Banach space. Suppose {U()(¥);¢=>0} and {S(©);¢=>0}
are strongly continuous semigroups of linear contractions on L with infinitesimal
operators A(€) = A1) + eA?) + 0(e) and B respectively. Suppose that
{B(t); t >0} is a family of linear operators on L and M) and M@ are
linear operators satisfying

3.1 B(e)f = Bf + ellVf + NP + 0(?)

for f€ N{domains of B, T") and M@} and e 0. Assume that B is the
closure of B restricted to (){domains of B, AWM A®) M and @3}, Sup-
pose for each € small, that the closure of A(€) + € 1B(e) is the infinitesimal
operator of a strongly continuous contraction semigroup T,(f) on L. Other
notation is that of §2.

THEOREM 3.1. Suppose U(f), (), B(t), 1), 0P, and T (t) are
given as above. Assume that lim,_, (A J5 e MS(t)fdt = Pf exists for every
f € L. Define

(.2) D;j={fERP;FEDALAN) N M)} for j=1,2,
D, = {f €D,; In € UB) N DAM) n 1))

33
¢ with Bh=- (A1) + 1V)f},
(34) Vs =paD + 1DYf  for fED;,j=1,2,
(3.5) Vf=PAM + 1Y% for f € D,.

Suppose that VADf=0 forall f€ D,. Assume R\ - v + f})) DDy N
D, for some \>0
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Then there is a strongly continuous contraction semigroup {T(t); t = 0}
defined on Dy N D, with lim._,oT.(t/e)f = T(t)f forall f€ D, ND,.

The infinitesimal operator of T(¢) is the closure of V) + V restricted
so that (V@ + V)f€D, N D,.

PrOOF. Let V. denote the closure of A(e) + € ! B(e), i.e., the infinites-
imal operator of T,(f); hence € !V, denotes the closure of € !A4(e) +
€ 2B(e), i.e., the infinitesimal operator of T.(t/e).

By Theorem 1.10 of [14] and Theorem 2.1 of [12, p. 357] it suffices to
show

{(f, WP + V)f); €D, N D,}
C { ) 3(f.. £) €V, with lim (£, €”g.) = (£ 9)}-
That is, given f€ D, N D,, we must find f, € AV,) and g, =V_.f, € R(V,)
such that lim_,of, =f and lim_,qe"'g, = (V® + V)f.
Let fED, ND, and h € DB) N DAM) N DAIY)) such that Bh =

@AM +1M)f  As in the proof of Theorem 2.1, we can find h, €
N {domains of B, AM), A® M) and NP} such that

lim eVh, =PAMD + MY - 4D + T)n

+PA® + 1@ f - 4® + 1)y,

IA® + 1 =o(1/e), 1A + TP || = o(1/€®),
and
el =o(1/€®), as €4 0.
Let f.=f+¢eh + e*h,. Then

eﬁl Vefe =¢! Vef + Veh + eVehe
=e14(e)f + €2B(e)f + A(e)r + € 'B(e)r + eV h,
=e 1AM+ ADf + 2B + 0 Vf + T + AMWn + 4@

+ e 1B+ TWn + ell®h + eVh, + 0(1)

=A®D + T f+ AD + 1w + eVh, +0(1) (as €4 0).

Thus lim,q€ 'V, f, =PA® + 0®)f + PAD) + ). Given fED, N
D,, there are f, € D(V,) for €>0 such that lim_of, =f and lim o€ 'V [ =
(V® + V)t QED.

REMARK. If [5°I(S(t) - P)flldt <o forall fEL and Pg=0, then the
solution of Bh=—g isgiven by h =7 (S(t)—P)gdt (see [S, p. 26]). This indi-
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cates how to solve Bh=—(A + I)f in the definition of D, although, in addition,
the condition h € D(4) must be satisfied. See Example 3.1.

EXAMPLE 3.1. Let £(?), Q=(qqp); P = (P,), and Banach spaces L and L
be given as in Example 2.1.

Foreach j=1,+++,N, €>0, suppose that {T(‘)(t)‘ t =0} is a strongly
continuous linear contraction semigroup on L with infinitesimal operator 4;(€) =
A +e4(®). Note that U€)(r) and S(2), defined by

U =TO0S, SO = ,?-:1 PO

for 1 <j<N are strongly continuous contraction semigroups on L. U(€)(f) and
S(t) have infinitesimal operators A(e)=A) +e4?) and B respectively, given by

AUEF) = @Df), + edDr); = AVf; + AP, (= 468,

N
(Bf),'= Z qjkfk forj=1,+¢+,N.
k=1

Foreach 1<j#k <N, suppose that {II;;(«);u >0} isa family of linear
contractions on L and H(‘) and 1-[(2) are linear operators satisfying

(3.6) Wy ()f = £ + eDf + 2N@f + o(e?)
as €40 for fE€ D([]l(,g)) N U(l'[](,f)) C L. Denote by {B(t);t>0} the family of

linear operators on L given by

BO) = z: O+

k=1;k

for j=1,2,+++,N. For i=1,2, we define I by
@Or); = Z TR

for j=1,2,+++,N and fE {f€ L;f,,ev(n,(;g), 1 <j<N,j#k}. It follows that
(3.7) BE)f); = BF); + e f), + M), + o(e?)

as €40 for f€MM) N P@®) N PB) = DI V) N PAI?)).
Now, € 14(€) + € 2B(e) is given by

(€1 4(e) + €2BE)f],; = AV, + 42,

(3.8) IR 2
+e? 3 apMp(elf tea;l;
k=1;k#j
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for j=1,++,N. € 'A(€) + € 2B(e) is the infinitesimal operator of the strongly
continuous semigroup T.(f) on L, defined by

Tt/ = BT (e oy ry T ey (e(e3 = 11)

3.9
e “oe T{Qey (t/e = ety (oye2 )}
for j=1,++,N,with t},¢5,+++, ¢} and v the jump times and number of jumps
respectively for the process £(x) in the time interval [0, ¢/?].

We assume that B is the closure of B restricted to {}{domains of A(1), 4(?),
MM, and M®)}. Asin Example 2.1, we note that lim,_ o) foe S(t)f dt = Pf
exists for each f€ L, where Pf is given by

N
(2.9 (Pf)j= Z pkfk
k=1
for j=1,+++,N. In this setting

Dm={f=(f;)e L;f}:w forj:l,oo.’N,

(3.10)
wE N (domains of 4™, g ))} form=1,2
1<a,j#k<N
and
vmf=p4m + nim)y s
N
j=1 1<j#k<N

forf=w- (1)€D,.

Recall that the notation f=w * (1) means f=(f;) and f;=w forall j=1,+-*,N.
We make the assumption that ¥(V)f=0 forall fED,.
We let

Dy = {f€D,; 3 € DB) N NAM) N pV) = paM) n pE )
(3.12)
with Bh = - (4D + m)f},

If we assume that f=w * (1) €D, and we note that it is true that
(3.13) o 1030 - Dl dr <o

for 1<j, k<N (see [4, p. 236]), then the function & satisfying Bh =
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—(AM + MW)f has the form

- N
= Jo O -PAD 1Oy dt= So (4™ + 1O,
N N
=Y npulaP + X g, TP )w
k=1 I=1;1#k
where foreach 1<j, k<N,
(3.14) Vi = fo ®jx(® — py) dt.

We have also assumed here that # € D(4(1)) N DAIY)). That is, we have assumed
that each coordinate f; =w of f=(f}) isin

N {domains of A{! ’Aﬁl),A&l )H},t), l'l,(;% )Al(al) and “;(I}:)ng)l}‘
1<a, B, j£k,m#n<N
We define
(3.15) 7f=pPA® + 1y

for f=(f,)=w* (1) €D,. Under condition (3.13) and with # € DAM)N
DT as required, we have

N
¥r); = ) Pin(l)hj + 2 p; ‘I,kn Yy
j=1 1<j #k<N

LT PR LT sl

1<k#ISN

N
1
+ Z pqukr[i(k)[ Zl vkmAsr:) + Z vkmqmnngr)l]w‘
m=

1<j#k<N 1<m#n<N
Hence
(f}f); 2 py ,kA(l)A(l)W + X Pj”jquzA,(l)nfclz)""
1<j,k<N 1<j,k#ISN
(3.16) + K#kz'm‘N Pi4jkVkm I'[I%)A'('})W
+ ) piqik"kmqmnn,(;)ﬂr(r}r).w

1<j#¥k,m#n<N

We also assume that RQA — v + 9] DD, ND, forsome A> 0.
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Then from Theorem 3.1 there is a strongly continuous contraction semi-
group {T(f);¢ >0} defined on D, N D, with lim . T.(¢/€)f = T(t)f for
all fED, ND,. The infinitesimal operator is the closure of V) + ¥ re.
stricted so that V() + ¥ €D, N D,.

4. Perturbation results with “buc-limits”. Let {X(¢);¢ >0} be a regular
step process with locally compact measurable state space (E, B). X(f) has
Markov kernel Q(x, A) on E X B, “holding function” A(x) measurable on B
satisfying 0 < A(x) <M < oo, and transition function P(t, x, I'). (For regular
step processes, see [1, p. 63]))

Let L be a Banach space. Foreach x €E,let {T, (f);¢t=>0} bea
strongly continuous contraction semigroup on L with infinitesimal operator 4.
For each x, y €E with x #y, let {ny(t); t = 0} be a family of linear con-
tractions on L and II,, be a linear operator satisfying IL,,(8)f=f + 8L, f +
0(%) (as8 4 0) for fEDAIL,,)CL

Let L be the Banach space of bounded, strongly measurable functions
f: E— L with [Ifll =sup,cgllfC)ll,. We say that buclim,_, o+ &, exists
and equals g for g,, g€ L if

(i) supg<r<sligall <o for some & > 0, and

() lim,_, .+ g\(x) =g(x) uniformly on compact subsets on E.

Define contraction semigroups {U(#); ¢ >0} and {S(¢);¢ =0} on L by

UONE =T, CONE = [fOW %, dy).
Let the subspace L, of L be givenand satisfy

Lo C {f € L|IU@)f and S(¢)f are buc-continuous;

@.1) f : e MS(t)f dt € Ly, and f : e MU()fdt € Lo}'

We define operators A and B with domains D(4) and D(B) respectively by

Af=burc:_;1(i)m g—@ft;f’ D(A4) = {f € L,; limit exists and Af € Ly},

Bf = bugl(i)m w > D(B) = {f € L,y; limit exists and Bf € L,}.
Note that A and B are restrictions of operators defined respectively by
AN E)=A4,fx)
for fE {fE€L; f(x) €EDA,) for x EE, sup,cpllAd, f(x)l <} and
BNE =) [, 1 0% D)F6) =D )
for fE€ L.
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Define bounded, linear operators {B(f); t = 0} by
BEONE =2 f,_ 1 0 )L, 6) = MRS E)
for fE€DB®) = {f € Lol B()f € Lo} The linear operator I is defined by
@NHE) =M [ 106 DI, 10)
for f€ D), given by
() = {fe LolTIf € Lo f() € D(1,,) forx #y EE;
and sup I, FON < o}
Note that for f € (\{domains of B, II, and B(e)}

BEONE =N [, 106 DI, OF6) = A )
=29 [, (1065 )f0)
) f 100 DMy FO) = ARSG) + o).

Hence,

“.2) BE))x) = B)x) + e(f)x) +o(€) (as e {0).

We assume that for each € > 0, there is a buc-continuous contraction semi-
group {T.(f); t > O} defined on L, such that (4 + € 'B(e))f =
buclim,_,o(T()f = f)/t) = V f. Assume also that B is the buc-closure of B
restricted to D(4) N D(B) N D{I). Notice that 4 + € !B(e) is a restriction of
the operator defined by

(A + €' BE) )
= 4, 1) + €@ [5_ (1) Q6 NI, @ 0) = F))

for f€ {f€ LIfp) €D(A,) for y € E;and supyeglid, f(Dl <<}. Also
{T.(); t = 0} is a restriction of the operator defined on L by

43)

(T(ON)) = E, {Tyx(o)(et f)“X(O)X(tI)(e)TX(t;)(e(t; -1}))
“.4)
.o Tx(t;)(t - Gt:)fx(r/E)}

where ¢}, 3, ¢+, ¢} and v are the jump times and number of jumps for the
process X(s) during the time interval [O, t/e].
We will need the following theorems. Theorem 4.1 is an application of
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[13, p. 27]. The proof of Theorem 4.2 is similar to that of Theorem 18.6.2 of
[8, pp. 512-517].

THEOREM 4.1. Suppose {W,(f);t=>0}, n=1,2, -+, are buc-continu-
ous contraction semigroups on L, with operators C, f=buclim,,o(W,()f -1/
having domain of those functions in L for which this limit exists and C,f€ L,,.
Define

C= {( £, 8); 3f, € W(C,) with g, = C, f,, satisfying bu,fiiﬂ‘ h=r
@“.5) and buc-lim g, = g}.
n—»>o

Then there exists a strongly continuous contraction semigroup W(t) on D(C)
such that W(t)f = buclim,,_, W, () f for each f € D(C) if and only if
R(A-C) D D(C).

THEOREM 4.2. Let S(f) be a buc-continuous semigroup on L, with
operator B defined by Bf = buc-lim,,,((S(t)f - f)/t) and with domain of B
as those functions for which this limit exists and Bf € L,. Suppose the follow-
ing conditions hold:

(i) for each compact set K C E, each € > 0, and each t > 0, there is a
compact set K, =K(e, t, K) such that sup,c,P(t, x, KC) <e€; and

(ii) forall f€ Lgy, buclim, ,oNge S fdt = Pf exists.

{Then we have

4.6) P is a bounded, linear projection;

@7 S(t)P =PS(r) =P forall t> 0;

4.8) R(P) = n(B), the null space of B;

4.9 R(B) is buc-dense in n(P);

4.10) BPf=0 forall fE€ Ly, PBf =0 forall f€ D(B).

THEOREM 4.3. Let E, U(t), S(t), B(t), T.(¢), 1, A, B, and V, beas

above. We assume that
(i) for each compact set K C E, each € > 0, and each t > 0, there is a

compact set K. = K(e, t, K) such that sup,cxPt, x, K¢) < €;and

(ii) forall f€ Ly, buclimy_ o\ e MS()fdt =Pf exists.
We denoteby D the set given by
@.11) D= {f€RP); f € V4) N ()}
and define the operator V for f €D by

4.12) Vf=PA4 +1f.
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We suppose that R(A— V) D D for some N> 0.

Then there is a strongly continuous contraction semigroup {I(t);t = 0}
defined on D satisfying buclim,, T () f=T(Of forall f€ D. The infinites-
imal operator of {I(t);t = 0} is the closure of V restricted so that Vf € D.

ProOOF. The proof is similar to that of Theorem 2.1. From Theorem 4.1 it
suffices to show

{7 Vf);feD} C {(f; g); 1f. € WV ,) with g, = V[, satisfying
bueC_-H)m fe =f and bug_;l(l)m ge = g}’

ie., given f €D, we must find f, € D(V,), g = V.f. € R(V,) such that
buclim,_,ofe =f and buclim., V. f, = Vf.

Then, using R(A — V) D D, we have that there exists a strongly continuous
contraction semigroup {T(f); =0} on D such that buc-lim__, T .()f = T()f
for each f € D. From Theorem 4.1 it also follows that the infinitesimal operator
of T(f) is the closure of {(f, 8); fE D(V), g = Vf, and f, g €D}, ie., the
closure of V restricted so that Vf € D.

Recall that B is the buc-closure of B restricted to D(4) N D(T) N D(B).
Hence for g in the buc-closure of R(B), there exist h, € D(4) N D(B) N D)
such that buc-lim,_,oBh, = g, and, if necessary by relabeling the index set, such
that I(4 + x|l =o(1/e) and [IA |l =o(1/€). Hence

bgg(l)im €Veh, = bugii&n (edh, + B(er,)
= bueri-)l(i)m (e(4 + Ih, + Bh, +0(e)) =¢&.

From Theorem 4.2 we obtain for f€ED that P(A + I)f— (A + IDf is
in the buc-closure of R(B); and hence we can choose {#.} C D(4) N D) N
D(B) such that buc-lim,_, o€V .h, = P4 + IDf — (4 + IDf, with |2l = o(1/e)
and [l4k |l = o(1/€). Also from Theorem 4.2 we have for fED that V f=
(A + € 'Be)f = Af + TIf + o(e)/e.

If we set f, =f+ eh, then buclim.,,f, =f and

buc-lim V, f, = buclim V. f+eVh,)
=buclim (4 + IDSf + eVeh, +o(1)) = P4 + INf=Vf.

Thus, given f €D, there are f, € D(V,) for € | 0 satisfying buclim. of. =f
and buclim. oV f, =V QED.

Let X(¢), L, and L be given as before. For each x €E, € > 0, let
{T,(f)(t); t > 0} be a strongly continuous contraction semigroup on L with in-
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finitesimal operator satisfying A, (e)f = AL + eAP)f +o(€) as € 4 0 for
f € MN{domains of A,(“ ), A,(f), and A4, (€)}. Suppose that for each x, y EE,
x #y, {Il,,(u); u >0} is a family of linear contractions on L and n;‘}, isa
linear operator satisfying I, ,(e)f=f+ el'lg,) f+é l'lgzy)f +0(e®) as €40
for f€ DY) N DAIE)).
Define contraction semigroups {S(¢); ¢ =0} and {U©(?);t>0},e>0,
on L by
UOONHE) =TOO®,  (ONE) = [f0IPE, x, dy).
Let the subspace L, of L be given and satisfy
Lo Q{f € LIV @) f and S(t)f are buc-continuous;

4.13 0
(@-13) f 0 e MS()f dt € Ly; and j: eMUE(fdte L, fore> 0}.

We define operators A(¢) and B with domains D (4(¢)) and D(B) respec-
tively by

vODf-f
t

A(e)f = buclim , D(4(€)) = {f € Lg;limit exists and A(€)f € Ly}

Bf = butc_-}(i)m ‘&t)l;-—f, D(B) = {fE€ L,;limit exists and Bf € Ly}

Note that A(€) and B are restrictions of operators defined respectively by
AEN)x) = 4,Fx) = AV (x) + eAP)f(x) + o) (as € 4 0)
for f€ {fE LIf(x) EDAP) N D(A,()) for x EE, j=1,2 and
Uy, j=1,2 I F @I < o} and
(B) () =0 f,_ 406 d)F () = NS ()

for f€ L.
Define bounded linear operators {B(¢); ¢t = 0} by

BONE =2@) [,_ 106 ML, () = AR )
for fE€DB(E)) = {fE€ Ly; BOSE Ly} The linear operator M) for j=1,2
is defined by
@PNE) =2 S 106 I 1)
for f€ DAD), given by DAY = {f € LoIf € Ly £() € DAIY)) for

x#y €FE;and supx*yllﬂg,) f)Il < o}. Note that for f € ({domains of B,
oM, 1@, and B(e)}
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BEONE =3 [_ 106 DI, ©F() = ARF )
=3 [ (406 )+ [, 06 LS ()

+ @) [, (106 ML) = ANDF () +0(e).
Hence,
(BEON)X) = B )x) + e(MVf)(x)
+ MPf)x) + 0(e?) (as € 0).

We assume that for each € > 0, there is a buc-continuous contraction semi-
group {T.(¢);¢ >0} defined on L, such that (4(e) + e 1Be)f =
buc-lim,, o (T () f — f)/t) = V.f. Assume also that B is the buc-closure of B
restricted to {){domains of AU ), ny ), and B, j=1,2}. Notice that A(e) +
€ !B(e) is a restriction of the operator defined by

(4@ + e BE)NH
@.13) = A0+ €N f 1005, YT, (€)1 0) ~ ()

for f€ {f€ LIf(¥) € D(A,(e)) for y € E; and sup,egll4,(e)f(¥)ll < }. Also
{T(t); t > 0} is a restriction of the operator defined on L by

(T )x) = Ex Ty DMy oy xe ey OT i ey 03 — 1)

4.16
(4.16) ces T)({e()t;)(t = et fxiejerk

4.14)

THEOREM 4.4. Assume in addition to the above that
(i) for each compact set K C E, each € > 0, and each t> 0, there is a
compact set K, =K(e, t, K) such that sup,pP(t, x, K¢) < €; and
(i) forall f€ Ly, buclimy_,oAfge S()f dt = Pf exists. Define

@17 D;={fER®;fEDAD)NDMD)} (for j=1,2)

Dy, = {f€D,; Ih € DB) N DAM) n D@D

4.18

(.18) with Bh =— (AWM + 1M)yf),
4.19) Vif=pAD + D) f  (for feD),
(4.20) Pf=PAM + TOYW (for fE€D,).

Assume that VOf=0 forall fE€D, and that RA— (VP + V)) DD, N D,
for some X\ > 0.
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Then there is a strongly continuous contraction semigroup {T(?);t = 0}
defined on Do N D, with buclim,_, T (t/e)f = T()f for all fE€D, ND,.
The infi mteszmal I operator of T(@t) is the closure of V) + 1% restrzcted so that
(V) + V)f €D, N D,.

The proof is like that of Theorem 3.1 with limit changes introduced as in
the proof of Theorem 4.3. Note that the remark given after the proof of Theorem
3.1 holds here also.

ExampPLE 4.1. Let {X(¢); ¢t = 0} be a temporally homogeneous, positive
recurrent Markov chain with state space £= {1,2,3,-++}. {X(#);¢ >0} has
generator @ =(qy), j, k€E, 0<q; <o for j#Kk Zi_ 4.4 ="q;
< oo; transition probabilities ( pjk(t); t 2 0), j, k € E; and stationary probability
distribution (py), k € E, where lim,, . p;;(¢) = pj. Assume that sup;cp lg;;l <oe.

Let the spaces and operators in the hypothesis of Theorem 4.3 be given. These
operators now take on the following form

WO f); = T(0)f; and (SO)); = Zie=, FiePjc (1)

®
with (Af);=4;f; and (Bf); = E;=1ql-kfk,
with (B()S); = (Bf); + e(llf); +o(e),

(i)

(A + €' B =A;f; + € 2 4ot @in s (€fy + € 'q;; f; and
Gi) (7, e(t)f),' =E,'[T x(0)(€? D H)q{(c.)x(t;‘)(‘?)T;s{(ti')(‘5(1"2l= =t7)
eee TX(r;)(’ = e13) Fx(ee)l-

Theorems 2.1 and 3.1 do not apply in this situation. Condition (2.2) does
not hold; for f€ L, \fg e MS(H)f dt does not converge in the strong topology
as A—> 0. But buclim,_ o\ fge ' S(£)f dt = Pf exists and &) =22, 1
Also for each compact set (finite set) K, each €> 0 and each ¢> 0, we can
use Z;,p;(f) =1 to obtain a compact set K, = K(¢, £, K) such that
sup, e P(t, x, K2) <e. Recall that B is assumed to be the buc-closure of B
restricted to D(4) N D).

In this setting

fE€Lylfy=h for jEE;h€ () (domains of Ay, M)
a,j¥kEE

sup [l4;hll <eoo;and sup [Tl Al < e
j j*k

and for f=(f}) = () €D,
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(V) = (PA+If), =3 pAih+ 2 pigpllh
j=1 1<j#Fk<o

Finally, assume R(A— V)2 D for some A> 0.

Then by Theorem 4.3 there is a strongly continuous contraction semigroup
{T(®); t >0} defined on D with buclim,, (T ()f=T(@)f foral f€ D. The
infinitesimal operator of T(f) is the closure of ¥V restricted so that Vf € D.

ExAaMPLE 4.2. Let {X(¢); ¢ = 0} be the Markov chain with state space
E=1{1,2,+++} given in Example 4.1. Let the spaces and operators in the
hypotheses of Theorem 4.4 be given. These operators now take on the following
form

' UOON=TEEOF; and SO); = Zg=y 0 ®)
® with (4@, =4;©f; and B = Zpydye fo
BON;= E,:;l,,,#q,-kﬂ,-k(t) fx +4;;f;and (H(i)f)j = E;c;l,kaéj qjkngc)fk’ i=12,
with BE)f) = Bf);+ (M@ f); + €(MIP)f); +0(e?), as € 1 0.

((A(e) + €1 BENN) = A4)(©)f; + € ' Ty 4t (©y +€ g £ and
@) (T = E T o)DMy 0)x(epy©T €63 = 1)

LX) Tz{'e()t;)(t - et;‘)fx(t/e)}-
) Py = X bt
=1

D;= {fe Lylfy=wiork€E;
w €N, ,,2nep(domains of AP, 1D);
and sup,, ,, xnep(IAPWI VITD, wl) <o} (i=1,2).
() Do=1{feD,BreN,,,.,(domains of ALV, M)y with
Bh=AM +n)r 1y
(V(j)f)k = E:=lpaAg)w + z.;l<m$n<°°,pmqmnngzlw
(for k€E,j=1, 2,f€Di).

We assume that B is the buc-closure of B restricted to {)(domains of B, A(l),
AD 1M and 1®). We also assume that (V(‘)f)j = Zgeq PgAgW +

2 <arp<oPolapllegw =0 forall f=w+ (1) €D,. Note that conditions (i)
and (ii) of Theorem 4.4 hold, as in Example 4.1.
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We assume that the following condition holds:
“.21) (1o —pyldt <o forall 1<), k<e.

For each 1<j, k <o, we denote v; = [5°(P; () — py) dt. If we assume
that f=(f)=w * (1) €D, that sup;cg(Tpey (A + ) [ 1) <,
and that h is the function satisfying h € D(AM)) N DAIV) with Bk =
—AM) + M)f, then we have that & has form

=[G O-PUD + IOy ar= T uy@® +10),

= X pAPw+ Y g, Tw.
k= 1<I#k<o

—

Note that the condition # € D(4M)) N DAIM)) implies that

® h=Y vpdPw+ 3 vpqIw € DY),

= 1<kFI<o0
i)  supldMha = sup |A(‘){ v, ADw + ) H(l)w}" < oo,
(@ FE A kz=:1 ek 1<1§1<~ et

(iii) For each 1 <i< oo,

hi= 2 veAPw+ 3 vuagll(Pw € DAID), and
k=1 1<KkFI<

g ){ kz_:l AW+ 3 vuaillPw }" <o

w)  supllTDa = sup
) i*? g1 g 1<Kk#EI<o

Define Vf=PAM + I for f=(f,)=w* (1) €D,. Under condition
(4.21), with h € D(AM) N DAIM)) as required, and with

sup (.i (D + H"))f)klb <e
k=1

we have

V). =Y p, AV, + P (D)
( )1 Exii 7 Ki;,:‘on itk jk "k

=Y p,AD v, A + v, T w
i=21 ] kz=:1 ikAk 1<1§1<~ JETK k1

+ X Pﬂjkni(;) { mZ_'.l ”kmAf,:) + X Vkmqmnngn)liw'

1€j#k<oo 1<m#n<»
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Hence,
1y =X pAt g 2 vy
j=1 k=1
l: ©o
4.22)

+ Z p]qlkn(l) Z VkmAsr:) w
1<j#k<oeo m=1

1
+ Z p]q]kn @ Z vkmqmnn( YW
1€j#k<o 1<Sm#n<e

Then from Theorem 4.4 there is a strongly continuous contraction semi-
group {T(¢); ¢t >0} defined on Dy, N D, with buclim_, T (t/e)f =T@)f
for all f €D, ND,. The mﬁmtesnnal operator of 7(¢) is the closure of
V® + ¥ restricted so that (V, + V) €D, N D,.
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